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The multi-state life table (MSLT) model is a “time-inhomogeneous, finite-space, 

continuous-time” first-order Markov model (Schoen 1988:64). Demographers frequently 

use it to analyze expected duration in various states when a stochastic process involves 

multiple and recurrent events, such as functional limitations (Crimmins, Hayward and 

Saito 1994; 1996; Land, Guralnik and Blazer 1994), HIV/AIDS (Palloni 1996), labor 

force participation (Hayward and Grady 1990; Hayward, Grady and McLaughlin 1988), 

cohabitation and marriage (Bumpass and Lu 2000; Espenshade and Braun 1982; 

Hofferth 1985; Schoen and Land 1979), poverty (Duncan and Rodgers 1988), living in 

poor neighborhoods (Quillian 2003). It has also been used in studies linking longevity to 

medical spending for the aging population (Goldman et al. 2005; Lubitz et al. 2003). 

When the MSLT model was originally developed, life tables were calculated using 

population-level rates – hence there was limited attention given to estimation 

techniques and variability in the life table functions. Increasingly, however, the inputs to 

the life table (i.e., transition rates or probabilities) are being derived from panel data 

obtained via large-scale survey sampling. Sampling variability is thus introduced into 

estimates of MSLT functions and it becomes important to measure its magnitude. 

Estimating sampling variability is important for hypothesis testing of group 

differences in MSLT functions such as life expectancy and survivorship. MSLT functions 

arise from a complex set of transitions and group differences in these functions may 

occur in ways that are not immediately obvious from analyzing parameter estimates in 

event-specific models in traditional event history modeling. For example, suppose one 

wants to test the hypothesis that males and females differ in health over the life cycle, 
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where health is measured by health expectancy (i.e. expected years in various health 

states) and trajectories of expected experiences, such as incidences and recoveries 

from functional limitations. This hypothesis is global in the sense that it takes into 

account sex differences in all of the transitions defining the life table model of life cycle 

health. How sex is associated with an overall process made up of multiple events, 

however, may be unclear for a number of reasons: 1) sex may significantly affect some 

transitions and not others; 2) sex effects, even though statistically significant, may be 

offsetting; and 3) sex effects may be non-significant for the whole set of transitions, yet 

the consistency of effects for a lengthy period of time may combine in a way in which 

the sex effect is reinforced and magnified with age. Since a covariate such as sex may 

affect life cycle health in many ways, we need a way to statistically evaluate sex 

differences in the overall process.    

From a methodological standpoint, an appropriate variance estimation procedure 

must also take into account the complex data structure of panel surveys (e.g., the 

Medicare Current Beneficiary Survey, the Established Populations for Epidemiologic 

Studies of the Elderly survey, the National Long-Term Care Survey and the Longitudinal 

Studies of Aging). These longitudinal surveys are the primary data source for many 

MSLT applications (e.g., Cai and Lubitz 2007; Crimmins et al. 1994, 1996; Goldman et 

al. 2005; Guralnik et al. 1993; Lubitz et al. 2003; Manton, Corder and Stallard 1993). 

They all have design elements such as stratification and multi-stage clustering with 

opposing effect on variance estimates. If these design factors are not adequately 
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controlled, variance estimates for MSLT estimates will be incorrect and statistical 

inferences will be invalid (Lohr 1999).  

In order to address this problem of variance estimation, we provide researchers 

with a new statistical program, the SPACE (Stochastic Population Analysis for Complex 

Events) program, which derives consistent MSLT variance estimates from complex 

survey samples. It joins two other publically available programs – the IMaCh 

(Interpolated Markov Chain) program and the GSMLT (Gibbs Sampling Multistate Life 

Table) program –developed for the estimation of MSLT functions and their sampling 

variability. The IMaCh program was developed on the basis of Lièvre et al. (2003), and 

has been used in a number of recent studies (e.g., Al Snih et al. 2007; Jagger et al. 

2007; Reynolds, Saito and Crimmins 2005). The variance of health expectancy 

estimates is derived from the variance of the transition probabilities. The GSMLT 

program was developed on the basis of Lynch and Brown (2005), which adopts a 

Bayesian approach to estimating MSLT. The variance of life table estimates is derived 

from samples of their posterior distributions. Since the GSMLT program does not 

address the issue of sampling design, the variance estimates are incorrect when 

complex survey data are used and thus the GSMLT program is not compared with the 

SPACE program in this study.1  

There are a number of important differences between the SPACE program and 

the IMaCh program. First, they differ in their treatment of the design factors of the 

 
1 There is another publically available program to estimate MSLT health expectancy (Weden, 2005, 

downloadable from http://www.ssc.wisc.edu/~mweden/). Since this program does not produce variance 

estimates, we will not discuss it here.   
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survey data. The IMaCh program assumes that the survey design affects the sample 

weight only. Sample weight is the inverse of the probability of the selection of each 

sampled individual. In surveys with single- or multi-stage clustering, one must also 

account for the selection probabilities of the clusters. The problem of variance 

overestimation in clustered survey data cannot be corrected by using sample weight 

alone (Lohr 1999). The SPACE program, on the other hand, uses a version of the 

rescaling bootstrap method developed specifically for complex surveys (Rao and Wu 

1988; Sitter 1992a). It produces consistent variance estimates by resampling clusters 

within each stratum, and has been implemented in earlier studies (Cai and Lubitz 2007; 

Cai, Schenker and Lubitz 2006).  

Second, the two programs differ in the choice of event history models to fit the 

panel data. Nearly all large panel surveys interview their subjects infrequently at 

intervals of one to two years, or even five years. This data collection schedule is likely 

to miss many events of short duration between scheduled follow-up interviews (Hardy 

and Gill 2004). It thus seems desirable to apply the MSLT model to shorter transition 

periods (e.g., monthly, quarterly, etc.) that are “embedded” within the longer 

observation interval. Laditka and Wolf (1998) first applied the embedded Markov chain 

(eMC) approach to MSLT estimations. Their research inspired Lièvre et al. (2003) and 

was incorporated in the development of the IMaCh program. The SPACE program, on 

the other hand, uses the traditional event history approach that assumes one single 

spell between two successive interviews. This assumption is used in many health 

expectancy studies (e.g., Cai and Lubitz 2007; Crimmins et al. 1994, 1996; Hayward 
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and Grady 1990; Land et al. 1994; Rogers, Rogers and Branch 1989; Rogers, Rogers 

and Belanger 1989).  

To date there is little conclusive evidence favoring one approach over the other, 

despite more realistic assumption employed by the eMC method. If health expectancy is 

the main goal of study, research suggests that both approaches may yield comparable 

results (Laditka and Wolf 1998). Gill et al. (2005) also noted that health expectancy 

estimates are insensitive to the time between observations for up to two years. For 

more direct analysis of events, such as the incidence of or recovery from disability, both 

approaches may be equally biased, however (Wolf and Gill 2008).    

Third, the two programs differ in the degree of modeling flexibility. The IMaCh 

program assumes that the underlying functional form for all events (i.e., the risk of 

disability onset, the risk of recovery, the risk of death from disability and from other 

states) in the state space follows a Gompertz failure time distribution. The Gompertz 

assumption may hold relatively well for changes in functional disability. But, if other 

processes were being modeled – e.g., retirement, marriage/divorce, etc., the Gompertz 

assumption need not hold and in fact could be inappropriate. In contrast, the SPACE 

program allows a more general set of failure time distributions, including the Gompertz 

function, so that it may be more applicable to a broader array of demographic analyses.  

Finally, the programs differ in computation techniques. The IMaCh program uses 

a deterministic approach (i.e., the radix population) to estimate health expectancy, 

while the SPACE program uses stochastic approach (i.e., microsimulation). 

Microsimulation is a computation technique that has become popular in recent years 
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(e.g., Cai and Lubitz 2007; Cai et al. 2006; Laditka and Wolf 1998; Lubitz et al. 2003; 

Wolf 1986). It uses MSLT transition probability estimates to produce person-level health 

trajectories; from this collection of individual data a broad range of population statistics 

can be computed directly. Many of these statistics may be difficult, or even impossible, 

to obtain otherwise (e.g., the probability of becoming disabled again at age 85 after 

two prior episodes, each lasting one year or longer).  

Another advantage of microsimulation is the enhanced capability to analyze the 

variability of health expectancy about its expected value (Wolf and Laditka 1997). 

Traditionally, researchers focus on the average value of health expectancy due primarily 

to the limitation of computation techniques. By tabulating individual life histories as a 

reflection of the underlying stochastic process, microsimulation allows analysis of the 

full frequency distribution of statistics of interest, rather than just their average values. 

Using such technique, Wolf and Laditka (1997) found substantial variation in the 

distribution of health expectancy. By combining microsimulation with the bootstrap 

method in the SPACE program, researchers will therefore have a powerful tool to assess 

the sampling variability as well as the uncertainty associated with the distribution of 

health expectancy as well as a broad array of population health measures.  

In the following sections we will describe the data set and the methods used in 

the SPACE program. We will then present two sets of results: one to compare the 

variance estimates from the SPACE and the IMaCh programs to assess the design effect 

(DEFF), and another to highlight the usefulness of microsimulation by presenting 

measures of the distribution of health expectancy at 65 years of age. These results may 
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help readers better understand the differences between the SPACE and the IMaCh 

programs. 

       

DATA 

The study population is drawn from the 1998-2002 panels of the Medicare Current 

Beneficiary Survey (MCBS). The MCBS is a nationally representative, multistage, 

longitudinal panel survey of the Medicare population, sponsored by the Centers for 

Medicare and Medicaid Services, and conducted continuously since 1991. The survey 

gathers data on a wide range of topics such as health status, socio-demographic 

information, and use and costs of medical services. Survey records are linked to 

administrative data on use and expenditures of Medicare-covered services (hospital, 

physician, etc.) and on vital status.  Interested readers can go to their website 

(http://www.cms.hhs.gov/mcbs) for more information.  

The MCBS has all the elements of a complex survey. Strata are created based on 

the characteristics of PSUs, which are basically large geographical areas (i.e., a 

Metropolitan Statistical Area (MSA) or group of contiguous counties). The largest MSAs 

in the country are selected with probability one, each is essentially a "stratum." Within 

these certainty strata, the first stage of selection is zip clusters, which are paired up to 

form pseudo strata; the individual zip clusters are considered PSUs for variance 

estimation. For each of the noncertainty strata, two PSUs are selected. The analysis 

sample used in this study has a total of 112 strata and 1,168 PSUs. The individual 

Medicare beneficiaries are then selected in the third stage (i.e., within each zip cluster) 

http://www.cms.hhs.gov/mcbs
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stratified by seven age groups (under 45, 45 to 64, 65 to 69, 70 to 74, 75 to 79, 80 to 

84 and 85 and over). The oldest (85 and over) and the disabled (64 and under) are 

oversampled to allow detailed analysis of their health status and health care needs. 

The MCBS follows a rotating panel design with three in-person interviews per 

year. Each person is scheduled to receive 12 interviews over a four-year period. Health 

status information is gathered once each year in the Fall. The 1998-2002 panels contain 

14,892 elderly beneficiaries. We excluded 1,017 persons of Hispanic origin or other 

racial/ethnic groups to focus on white and black non-Hispanics only, since the IMaCh 

program cannot accept more than two categories at a time for any covariate. The full 

analysis sample contains 50,830 person-year observations for 13,875 persons of age 65 

and older. We use a dichotomous measure of health based only on the presence of 

limitations in activities of daily living (ADLs). A person is considered disabled if he or she 

either responds “yes” to having difficulty with one or more of the six ADLs – bathing, 

dressing, eating, transferring, walking, and using the toilet, or responds “does not do 

the activity because of a health or physical problem.” Otherwise, this person is 

considered non-disabled or active. Survey respondents potentially “move” between the 

disabled and non-disabled states over time, and death is the third and the absorbing 

state.  

Table 1 shows several characteristics of sampled persons in the study 

population. The majority of sampled persons are women, white non-Hispanics, between 

ages of 65 and 74 and free of IADL and ADL limitations. The educational achievement 

of the incoming panels shows substantial improvement over the five-year period. 



 

 - 9 -

Between 1998 and 2002, the proportion with less than 11 years of education dropped 

from 30 percent to 24 percent, while the proportion of those with at least some college 

education increased from 34 percent to 43 percent. On the other hand, the prevalence 

of active health in the incoming panels dropped slightly from 62 percent in 1998 to 59 

percent in 2002, while the prevalence of both IADL and ADL limitation increased 

slightly. 

    

THE SPACE PROGRAM 

The SPACE program has two components. The main component controls the generation 

of bootstrap samples, calls the statistical module to perform MSLT calculations and 

collect the bootstrap estimates, as well as the original point estimates from the full 

sample, into a small data set for further analysis of sampling variability. The statistical 

module estimates the observed prevalence of health states, performs the logistic 

regression estimation, and using these two pieces of input to estimate health 

expectancy or other statistics of interest. It is written in PC SAS 9.1 and requires 

SAS/BASE, SAS/STAT and SAS/IML (Interactive Matrix Language). The “users manual” 

in the zip file contains detailed instructions on how to use this program.     

Methods  

1. Model Estimation 

The MSLT estimation is performed in the main statistical module of the SPACE program. 

It takes the traditional event history approach by assuming at most one event between 

two successive observations: if one has the same health status in both occasions, then 



 

 - 10 -

it is assumed that no event has occurred between the two dates; if they are different, it 

is then assumed that only one event has occurred. Following this assumption, the 

SPACE program examines the occurrence of event (or lack of it) between pairs of 

successive interviews and fits a multinomial logistic regression of the following basic 

form: 

,)log( agepp ijijiiij βα +=  (1) 

where  is the transition probability from the current state to state ijp i j ( ji ≠ ) over the 

observation interval. 2 Additional covariates (e.g., gender and race/ethnicity) can be 

added to help evaluate the differences in MSLT function among population subgroups. 

The expanded regression takes the following basic form:  

./)log( 321 ethnicityracegenderagepp ijijijijiiij   (2) α β ++=

                                       

β + β

Although these basic forms are identical to those in the IMaCh program, users 

will have substantial flexibility to modify their specifications to find the best model for 

their data. SAS offers powerful modeling capabilities in its procedures for categorical 

variable analysis. Researchers can relax the Gompertz assumption of the age function 

to test other forms of age dependence (e.g., logarithm or polynomial functions). They 

can use model selection procedures to quickly evaluate the main and interaction effects 

of covariates on either the full sample or its subsets. They can also evaluate different 

forms of the link function (e.g., cumulative, multinomial or complementary log-log) to 

reflect the characteristics of the underlying stochastic process. This flexibility of 

 
2 The SPACE program also provides the option to fit a set of constant hazard functions as in Hayward 

(1999) and Crimmins (1996), and to use the radix population method to calculate health expectancy. 
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modeling is unavailable in the IMaCh program.   

It is worth noting that the traditional approach does not take into account the 

variation in actual interval between interviews. It simply arranges the data into pairs of 

observations and models the conditional event probabilities directly. In the case of 

MCBS, although it is designed with 12-month intervals, the actual gap ranges from 8 or 

9 months to 16 months (Table 1). This variation of time interval is ignored by the 

traditional approach, but not by the eMC method. As a result, the SPACE coefficient 

estimates for the “annual” interval are slightly different from the IMaCh estimates with 

12-month interval (results not shown here).  

The SPACE program has a lower burden of computation than the IMaCh 

program. The logistic regression estimation is very quick in the SPACE program because 

it directly estimates the conditional probability between pairs of observations. Under the 

assumption of eMC, “the probability of making a transition from state  to statei j  over 

an interval of  months is the (  entry in the matrixw ), ji wP ” (Laditka and Wolf 

1998:224). Given that only a fraction of the states a person occupies over the course of 

study is actually observed at scheduled follow-ups, the eMC approach used by the 

IMaCh program estimates the short-interval transition probabilities through an iterative 

algorithm that maximize the likelihood of “producing” these partially observed data. The 

convergence of iterative algorithm, if it exists, is typically time-consuming and depends 

on the starting values assumed for the parameters and characteristics of the data 

sample.  

2. Calculation of the MSLT Functions     
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A distinct feature of the SPACE program is its use of microsimulation as the primary 

means of computation of MSLT functions. During the last two decades, microsimulation 

has emerged as a promising computational tool to analyze population health in 

demography. By tabulating the life history for each simulated individual, researchers 

can examine a broad array of summary statistics.  

The simulation procedure is also performed in the main statistical module. Since 

it has been used in many previous studies (e.g., Cai and Lubitz 2007; Laditka and Wolf 

1998; Wolf 1986), we will only provide a brief overview here. Suppose we want 

simulate the life histories of a 100,000-person cohort of 65-year olds. We first convert 

the logistic regression coefficient estimates into age-specific multi-state transition 

probabilities. Then for each member of the 100,000-person cohort, we evaluate his or 

her possible health changes by comparing a uniform random number with the transition 

probabilities, conditional on the current status. We perform this comparison one age at 

a time until his or her death. After we repeat this process for the entire cohort, we have 

a large collection of individual life histories from which various summary measures such 

as health expectancy can be derived.  

There is a minor difference between the SPACE and the IMaCh program 

regarding the estimation of population-based health expectancy. Population-based 

health expectancy at age 65 is a weighted average of status-based expectancy. To 

make the estimates representative of the current population, researchers typically use 

as weight the observed prevalence of health status at 65. The SPACE program follows 

this tradition, although in this present study we used smoothed prevalence estimates 
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1−h

since the number of 65-year olds in the MCBS sample is very small. The IMaCh program, 

on the other hand, uses the period prevalence (Lièvre, Brouard and Heathcote 2003). 

The period prevalence is an equilibrium prevalence achieved in a stable population, 

assuming all current conditions are to remain constant. During times of improving 

health, this period prevalence of disability is expected to be lower than the observed 

prevalence, as is shown in Table 2B. The effect of prevalence on population-based 

health expectancy is generally very small, relative to the regression coefficients. 

3. The Bootstrap Procedure   

Variance estimation for a complex survey needs to consider additional sources of 

variability that are not present in a SRS. A complex survey usually includes stratification 

and multi-stage clustering. Treating a stratified sample as a SRS usually overestimates 

the variance, while treating a clustered sample as SRS usually underestimates the 

variance. Although the net effect is often not straightforward, it is nonetheless clear 

that ignoring the complex sampling design can lead to incorrect statistical inference 

(Lohr 1999).  

Given the sampling design of the MCBS, we apply a version of the rescaling 

bootstrap of Rao and Wu (1988), which has been described in detail in Lohr (1999:307), 

and has also been used in two recent studies (Cai and Lubitz 2007; Cai et al. 2006). We 

first sample n PSUs with replacement from each of the 112 strata, where is the 

number of PSUs in stratum . For each PSUi sampled from stratum , we multiply the 

sample weight by

hn

h h

i
h

h m
n

n
∗

−1 , where im  is the number of times the PSUi is selected. It is 

worth noting that this particular procedure has two potentially offsetting sources of bias. 
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First, this procedure resamples only at the PSU level and thus will underestimate the 

variance for a multistage survey. This source of bias is not likely to be significant, 

however, since the additional variability due to subsampling at later stages is usually 

negligible compared to variability at the PSU level (Lohr 1999). Second, this procedure 

draws the bootstrap samples with replacement, which may lead to overestimation of 

the variance for data sampled without replacement. This second source of bias may be 

negligible if the first-stage sampling fraction is small (Rao 1988). If not, then alternative 

procedures specifically developed for without-replacement samples (e.g., Bickel and 

Freedman 1984; Sitter 1992b) can be considered. But these procedures are more 

difficult to implement and require knowledge of the sampling fraction, which we often 

do not know and which is typically not available to researchers using the publicly 

released versions of the survey data. 

To be sure, the bootstrap method is not the only approach to variance estimation 

in complex surveys. Other alternatives include the traditional linearization approach and 

two other data resampling methods – the balanced repeated replication (BRR) method 

(McCarthy 1969), and the Jackknife method (Quenouille 1949; Tukey 1958). The 

linearization approach has been used extensively in statistics. It can produce a variance 

estimate for any statistic if the variance formula is known and continuously 

differentiable. But not all statistics fall into that category (e.g., the median and other 

quantiles), and for those that do, derivation of the formula may sometimes be too 

complicated to be useful (Shao and Tu 1995). In addition, a separate variance formula 

must be derived for each statistic, which can be “difficult and tedious” (Shao and Tu 
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21995:4). The BRR method is often used for surveys with =hn

2≥h

hn

 primary sampling units 

(PSU) per stratum , where BRR samples are created by sampling one PSU from each 

stratum. The BRR variance estimators are consistent if the statistic is a smooth (i.e., 

continuously differentiable) function of the weighted sample mean; for sample quantiles, 

the BRR estimators are still consistent under some weak conditions (Shao and Tu 1995). 

Although the BRR method can be generalized to handle n  PSUs per stratum 

(Valliant 1987), the application “… is not easy when the are not equal”, and “may 

require separate software or involve nontrivial mathematical developments” (Shao and 

Tu 1995:244). It may even overestimate the variance if the number of PSUs in stratum 

in the population is small (Lohr 1999). The Jackknife samples are formed by deleting 

one PSU from each stratum at a time. Like the BRR estimators, its variance estimator is 

also consistent if the statistic is a smooth function of the weighted sample mean, but 

the Jackknife method is not applicable to quantile estimators (Shao and Tu 1995). Its 

property in unequal-probability, without-replacement survey is generally unknown (Lohr 

1999).  

h

h

Compared with these alternatives, the bootstrap method usually requires more 

computation, and its theoretical properties in complex surveys are not as fully studied 

as the other methods (Lohr 1999). There is also evidence from simulation studies that 

the bootstrap results do not outperform the Jackknife and the BRR results in the case of 

stratified one-stage simple random sampling with replacement (Kovar, Rao and Wu 

1988). But the bootstrap method also has a number of advantages. It can be used to 

estimate variance for a broader class of statistics, including sample quantiles or even 
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the entire sampling distribution. It can also provide consistent variance estimators for 

surveys with imputed data, and has a “higher potential to be extended to other complex 

problems” than the BRR and jackknife approaches (Shao and Tu 1995:280). From a 

practitioner’s perspective, it therefore seems reasonable to conclude that the bootstrap 

method is a suitable all-purpose variance estimator for MSLT functions.   

 

RESULTS 

The main results of this study are presented in Tables 2-4. Tables 2A and 2B present 

the coefficient estimates of the logistic regressions as well as the prevalence of 

disability as input to the calculation of MSLT health expectancy estimates at age 65, 

which are presented in Tables 3 and 4. We fit the same logistic regressions of the form 

of eq. (2) for both IMaCh and SPACE programs to facilitate comparisons. In Table 2A, 

the IMaCh coefficients are estimated with one-month transition interval and the SPACE 

coefficients are estimated with annual interval. All of the coefficient estimates are 

statistically significant. The gender coefficients indicate that elderly women are more 

likely to become disabled, while less likely to recover and to die, than elderly men. The 

race coefficients indicate that elderly blacks are more likely to become disabled and die, 

while less likely to recover, than elderly whites. Table 2B shows the period prevalence 

of health states used in IMaCh health expectancy estimates as well as the predicted or 

smoothed prevalence for SPACE estimates. The SPACE prevalence estimates are similar 

to the observed prevalence, while the IMaCh prevalence estimates of disability are 

noticeably lower.           
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Table 3 presents the IMaCh estimates of population-based average life 

expectancy at age 65 by gender and race/ethnicity, and compares two sets of variance 

estimates – the bootstrap estimates that consider survey design and the IMaCh 

estimates that do not. The point estimates of health expectancy in this table are based 

on the IMaCh one-month coefficient estimates in Table 2A. The bootstrap variance 

estimates are obtained in the following manner. We first randomly select 250 bootstrap 

samples from the full analysis sample, then use them as input data set to the IMaCh 

program to derive 250 sets of IMaCh point estimates. The variances of these 250 

estimates are used as the bootstrap variance estimates for the original IMaCh point 

estimates and are compared to the IMaCh variance estimates that do not reflect the 

complex sampling design of MCBS.  

The design effect (DEFF) is measured by the ratio of the bootstrap variance 

estimates to the IMaCh estimates to evaluate the degree of bias in variance estimates 

by treating a complex survey as SRS. Since stratification and clustering have opposing 

effect on sampling variability, the value of the ratio may suggest the relative size of 

these design factors: if the ratio is greater than one then the clustering effect may be 

stronger; if the ratio is less than one then the stratification effect may be stronger. 

Table 3 shows that the bootstrap variance estimates are larger than the IMaCh 

estimates in all cases – an indication of the clustering effect being stronger than the 

stratification effect in MCBS. In some cases the bootstrap estimates are much larger. 

For example, the variance of ALE for all 65-year old is 67% larger and the variance of 
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DLE for white non-Hispanic female is 75% larger. The differences in variance estimates 

are not large enough to change the results of hypothesis tests, however. 

Table 4 presents the SPACE estimates of the average, median and the 25th and 

75th percentiles of total, active and disabled life expectancy at age 65, by gender and 

race/ethnicity. We also include the 2000 Vital Statistics as a comparison (Arias 2002). 

The SPACE estimates of health expectancy at age 65 are calculated using the 

regression coefficient estimates in Table 2A and the smoothed prevalence in Table 2B.  

The point estimates of average TLE in Table 4 indicate some small differences 

with the 2000 Vital Statistics - the largest is 4.7 percent for white women. They are 

caused mostly by the lack of control for the variations of actual time interval between 

interviews in the SPACE program. We verified this source of difference by manually 

calculating the transition probabilities using the SPACE coefficient estimates in Table 2A 

and the IMaCh coefficient estimates with 12-month transition interval (not shown here). 

The IMaCh estimates of average TLE assuming a 12-month interval is closer to the 

2000 Vital Statistics than the SPACE estimates.   

The bootstrap variance estimates in Table 4 are also derived from 250 bootstrap 

samples, and are mostly smaller than the bootstrap variance estimates in Table 3. 

There may be an intuitive explanation for this: as one treats the partially-observed 

MCBS data as complete data and limits the number of events between successive 

observations, estimates of the average number and duration of health events become 

less variable. As a result, the sampling variability of health expectancy becomes smaller.  
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Estimates of median health expectancy at age 65 suggest that the distributions 

for TLE and ALE are generally symmetric, while the distributions of DLE have a longer 

tail on the right. Due to space constraints, we present the histograms of ALE and DLE at 

65 for black men only in Figures 1 and 2. Figure 2 indicates the distribution of DLE is 

highly skewed to the left. About half of all black men are expected to have 2 or fewer 

disabled years; a insignificant percent (25%) will spend five or more years in disability 

stage after age 65.   

    

CONCLUSION 

This paper introduces the SPACE program, which provides demographers and social 

scientists with an alternate, and we believe, improved, means to model the dynamics of 

complex events and to draw statistical inferences. There are two major differences 

between the SPACE program and the other programs: the use of the bootstrap method 

to obtain consistent variance estimates from complex survey samples and the use of 

microsimulation to tabulate individual life histories. The bootstrap variance estimates 

are larger than the IMaCh estimates that do not consider sampling design in all the 

subgroups of the elderly population that we examine in this study, which suggests the 

importance of measuring sampling variability correctly in studies of MSLT functions. The 

use of microsimulation also provides a wide range of measures to characterize the 

dynamics of the aging process. In this study we examined the average values as well as 

the distributions of health expectancy to highlight the usefulness of microsimulation. 
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The high degree of asymmetry of the DLE distribution would have been hidden from 

analysts using deterministic approaches such as the radix population.   

A practical consideration of the bootstrap procedure is the number of bootstrap 

samples to use. Unfortunately, there is no definitive answer to this question, given the 

many factors that may need to be considered. Our advice is to first select the best 

model from the full analysis sample, and then to run a large number of bootstrap 

samples to check if variance estimates display any noticeable pattern of variation for 

different sizes of the samples. If the variance estimates do not appear to stabilize , then 

more samples need to be drawn. In the present study, the variance estimates already 

appear stable at 250 samples; using a larger size such as 500 samples does not seem 

to affect these estimates at all.  

Arguably the most controversial assumption used by the methods in the SPACE 

program is about the number of transitions between two successive observations, which 

is either zero or one. This assumption is conceptually weaker than that used in the eMC 

method. The differences between the IMaCh and SPACE estimates are small in our 

study, likely because of the frequent interviews in MCBS. As the length of interval 

between interviews increases, the MSLT parameter estimates in the SPACE program will 

likely become more biased. As a result, the simulated life histories are likely to be 

incorrect also.  

From a practical perspective, however, there can be difficulties to implement the 

conceptually superior eMC method. A problem with the IMaCh program is the 

nonconvergence of the iterative likelihood maximization algorithm. While this is not 
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i

necessarily an indication of any problem with the eMC method itself, it makes the use of 

eMC method more difficult. Craig and Sendi (2002) suggest using the deterministic 

expectation-maximization (EM) algorithm to avoid the convergence problem. The E-step 

calculates the probability of every possible path one can take between state and j  

over the  months between two successive observations. This approach requires a 

large amount of computation that can quickly become unmanageable. For example, 

suppose there are five health states (excellent, very good, good, fair and poor), which 

can change once per month. If two interviews are made on the 65th and 66th birthdays, 

then the number of possible trajectories one can take during the 10 intervening months 

will be 510=9,765,625. If the interviews are made every 24 months, then the number of 

possible paths becomes 522=2.384x1015. Such a large number of possibilities may mean 

that there is no possibility to obtain exact solutions. Alternatively, one can use the 

regularization techniques (Charitos, de Waal and van der Gaag 2007). It replaces 

negative entries on each row of the short-interval matrix with zeros and adjusts the 

non-negative entries on the same row based on a distance criterion. Using simulated 

data, the authors show that their method outperforms the EM approach when the 

number of health states is small. 

w

 Both solutions mentioned above assume homogeneity within an annual age 

intervals (i.e., constant transition probabilities between two successive birthdays) as in 

the eMC method. This assumption is intended to simplify the computation rather than 

to be a realistic description of the underlying stochastic process. In our opinion, a more 

general solution should allow nonhomogeneous short-interval transition matrices that 
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change over every short-interval. Since it is not clear how the two solutions mentioned 

above can be extended to this more general case, a new approach to estimation is 

therefore needed.  

In future works, semi-Markov model of the form in Cai et al. (2006) should also 

be incorporated into the SPACE program. A semi-Markov model is likely to be more 

appropriate for analysis of disability transitions given the evidence of duration 

dependence (e.g., Crimmins and Saito 1993; Hardy et al. 2005; Hardy and Gill 2004). It 

will also help reduce the problem of unobserved heterogeneity in the current choice of 

event history models. The regression models in both the SPACE and the IMaCh 

programs treat the observations within a person as conditionally independent of each 

other, given the covariates in the regression. If the model is misspecified, this would 

overestimate the sampling variability and conservative results of hypothesis testing. By 

including duration dependence in the model, the bias in variance estimates may be 

reduces, although the issue of unobserved heterogeneity may still remain.  

Another area that awaits further research is the way sample weights are used in 

MSLT calculations. The IMaCh program uses only a single weight across all monthly 

intervals within a person to estimate transition probabilities, effectively equalizing the 

sample representativeness of these “observations” at different time points. The SPACE 

program, on the other hand, uses multiple weights, one for each time interval. In the 

current study, these are the cross-sectional weights in MCBS that correspond to the 

year when current health status is observed. Although the MCBS provides longitudinal 

weights to analyze persons across waves of observations, they are designed only for 
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survivors of each panel (Ferraro and Liu 2005), and not appropriate for analysis of the 

event of death. Based on our own calculation, health expectancy estimates do not 

appear to be affected by the approaches to sample weights. But it is still desirable to 

devote more research to this issue. 

We hope the SPACE program will become a useful analytic tool for researchers. 

It can be obtained from ???, or from the corresponding author.  
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1998 1999 2000 2001 2002

Sample size (N) 2577 2724 2861 2882 2831

Time between interviews (in months)
Min 9 9 9 8 8

Mean 12 12 12 12 12
Max 16 16 16 16 16

Gender  
Male 40.3 40.4 42.3 41.4 41.8

Female 59.7 59.7 57.7 58.7 58.2

Race/Ethnicity
White non-Hispanic 92.3 91.6 91.3 91.5 92.3

Black non-Hispanic 7.7 8.4 8.7 8.5 7.7

Age
65-74 57.9 56.5 54.7 53.0 53.7

75-84 32.4 33.8 35.4 35.4 34.4

85+ 9.7 9.7 9.9 11.7 11.9

Education
0-11 yrs 30.3 29.0 27.7 26.9 23.6

High school graduates (12 yrs) 35.6 29.7 29.4 30.9 33.8

At least some colleges (13+ yrs) 34.2 41.3 42.9 42.2 42.7

Functional health status at first interview
Active (no IADL/ADL limitations) 62.0 58.8 59.7 59.2 59.2

IADL limitations only 11.5 13.2 11.3 12.8 12.8

1+ ADL limitations 26.5 28.0 29.1 28.0 28.0

(in weighted percents of sample size)

Table 1. Characteristics of the Analysis Sample of 1998-2002 Panels in MCBS
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