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Abstract

The United Nations Population Division produces estimates and projections of the
total fertility rate for all countries in the world every two years. For countries with
fertility above replacement level, future levels are projected based on a parametric
function. We develop a Bayesian hierarchical model for producing probabilistic pro-
jections of fertility. Differences in data quality for observations within a country are
assessed by relating a standardized weighting scheme to the empirical variance of the
measurement errors. We quantify the country-specific uncertainty in future fertility,
as well as in the estimates of past levels of fertility, and we give results for a number
of Asian and African countries.
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1 INTRODUCTION

The UN Population Division produces estimates and projections of various demographic in-
dicators for all countries in the world every two years. The latest revision was produced in
2007 and is the 2006 Revision of the World Population Prospects (United Nations, Depart-
ment of Economic and Social Affairs, Population Division 2007). A demographic transition
model is used to project the decline in the total fertility rate (TFR) from high levels of
fertility towards replacement level fertility. In this model the annual decrements in the TFR
are a function of the level of fertility (United Nations, Department of Economic and Social
Affairs, Population Division 2005). Three sets of parameter values describe three different
trajectories of future declines, from which the analyst chooses one which seems most appro-
priate for the country of interest. This gives the Medium variant of the fertility projection.
The effect of lower or higher fertility is illustrated with the Low and High variants of the
projections. In the high variant, half a child is added to the medium variant in order to
examine the influence of a slower fertility decline on the population projections. Similarly
for the low variant, half a child is subtracted from the medium variant.

A drawback with this approach is that the projections are not very country-specific; only
three trajectories are being considered for modeling future fertility decline from which one
is chosen. This means that the medium variant gives the same pace of fertility decline for
several countries, regardless of the difference in pace of the decline that has been observed
in the past. Moreover, this approach does not assess the uncertainty in future fertility
levels between countries (Bongaarts and Bulatao 2000) and it does not give insight into the
difference in uncertainty between countries; Countries in which the fertility transition has
only just started will have more uncertainty in future levels of fertility than countries for
which fertility is close to replacement level. Last, measurement errors in fertility rates lead to
uncertainty in past estimates of fertility rates. The extent of the uncertainty in past fertility
levels is not being assessed either.

In this article we propose a model for (a) deriving country-specific projections of the total
fertility rate and (b) assessing the uncertainty around estimates and projections of the total
fertility rate during the fertility transition from high fertility towards replacement fertility.
We propose a Bayesian hierarchical model to produce probabilistic estimates and projections.
In this model, fertility decline is decomposed into a systematic decline with distortion terms
added to it. The pace of the systematic decline in TFR is modeled as a function of its level,
based on the UN methodology. Difference in data quality is taken into account by relating
a standardized weighting scheme to the variance of the measurement errors.

This article is organized as follows; In Section 2 we discuss the model as used by the UN
Population Division to predict fertility decline, Section 3 explains the Bayesian hierarchical
model which is used to estimate and predict fertility and asses the uncertainty in TFR over
time. Section 4 deals with data issues, how to incorporate the differences in data quality
into the model. In Section 5 we present results for a number of countries and in Section 6
we discuss possible improvements on the methodology.
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2 MODELING FERTILITY DECLINE

The UN Population Division uses a demographic transition model to project fertility decline
for countries in which the TFR is above replacement level. Annual fertility decrements are
modeled as a function of the level of fertility (United Nations, Department of Economic
and Social Affairs, Population Division 2005; Meyer 1994). Fertility decline starts slowly at
high TFR values, the pace increases and peaks around a total fertility rate of 5 children per
woman, and then slows down again towards the end of the transition.

The UN uses three different trajectories to model future declines. The three trajectories
are based on observed fertility declines in countries that have completed the fertility transi-
tion. The “Slow/Slow” trajectory represents a slow-paced fertility decline, the “Fast/Fast”
trajectory represents a decline with a faster pace. The third trajectory is called “Fast/Slow”,
which represents a decline that starts at a high pace like the Fast/Fast scenario, then over
time its pace matches up with the Slow/Slow trajectory. For each country, the analyst
chooses one trajectory which seems most appropriate for the future fertility decline in that
country. Figure 1 shows the Slow/Slow and Fast/Fast trajectories, together with the an-
nual decrements since 1950 for all countries going through the fertility transition. These
annual decrements are derived from the estimates of past fertility levels in the UN World
Population Prospects (WPP), the 2004 revision (United Nations, Department of Economic
and Social Affairs, Population Division 2005; United Nations, Department of Economic and
Social Affairs, Population Division 2005).
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Figure 1: Annual decrements in TFR: The Slow/Slow and Fast/Fast scenarios for predicting
fertility decline (in green and red), and observed annual fertility decrements since 1950 as
given by the UN WPP 2004 estimates.

The pace of the fertility decline is modeled as a function of its level using the sum of two
logistic curves, a double logistic function (Meyer 1994). The first logistic curve describes a
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high pace of decline at high total fertility rates decreasing towards a lower pace for smaller
fertility. The second curve describes the opposite effect; an increase in TFR for higher values
to slow down the pace of fertility decline at the beginning of the transition. The sum of the
two describes a decline in fertility which is low for high and low TFR, and peaks around 5.
The scenarios are based on different sets of parameters of the double logistic function.

The model for the pace of the fertility decline is denoted as follows; Let f be the total
fertility rate, and d(f) the the annual decrement (fertility decline) at TFR f as modeled by
the double logistic function, which is given by:

d(f) = dmax





−1

1 + exp
(

− ln(p2)
△1

(f − t1)
) +

1

1 + exp
(

− ln(p2)
△3

(f − t3)
)



 , (1)

with parameters (△1,△2,△3,△4, dmax), t1 = △4 + △3 + △2 + 0.5△1 and t3 = △4 + 0.5△3.
For an interpretation of the parameters (△1,△2,△3,△4, dmax), see Table 1 and Figure 2.

Note that the double logistic model does not predict the onset of the fertility transition, it
focuses on pace and trajectory of the decline after its onset. In order to predict future fertility
levels in countries for which a decline has not yet been observed, additional assumptions are
needed about the timing of the onset of the decline.

Parameter Interpretation

dmax Maximum annual decrement

△1 TFR range for which decrements increase from 1
p+1

dmax to p

p+1
dmax

△2 TFR range with approximately constant decrements dmax

(decrements change from p

p+1
dmax to dmax to p

p+1
dmax)

△3 TFR range for which decrements decrease from p

p+1
dmax to 1

p+1
dmax

△4 TFR range for which decrements decrease from 1
p+1

dmax to 0

For p = 9
△1 + △2 + △3 + △4 TFR level at the onset of fertility decline at which the pace is 0.1dmax

△2 + △3 + △4 TFR at which the pace has increased to 0.9dmax

△3 + △4 TFR at which the pace is 0.9dmax and has started to decrease
△4 TFR at which the fertility levels off

(pace is 0.1dmax and will decrease to zero)

Table 1: Parameters of the double logistic function
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Figure 2: The double logistic model for fertility decrements; Annual decrements are plotted
versus decreasing TFR.
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3 BAYESIAN HIERARCHICAL MODEL

In this section we discuss a Bayesian hierarchical model for fertility decline. The goals of
this model are to (a) construct country-specific projections of fertility decline, (b) assess the
uncertainty around estimates and projections of the total fertility rate during the fertility
transition from high fertility towards replacement fertility.

Denote the TFR for country c, year t by fct. The length of the observation period is
T , t ∈ {1, . . . , T}, there are C countries, c ∈ {1, . . . , C}. Now let ycts be observed TFR for
country c in year t for observation s = 1, . . . , nt with:

ycts
ind
∼ N(fct, σ

2
cts), (2)

with σ2
cts being the variance of the measurement error of observation ycts. The various

observations of TFRs differ in quality, some observations are known to be of better quality
than other observations; the measurement errors differ between observations. The variance
of the measurement errors will be discussed in the next section. It will be modeled as

σcts = Mctsδc (3)

with Mcts a “data quality multiplier” which is determined by data quality covariates of
observation ycts, and δc the country-specific standard deviation of the measurement errors.

Data quantity differs substantively between countries. For example, in Bangladesh we
have time series with several observations of the TFR in each year since 1970. For Bhutan,
there are only 5 observations in total of TFR levels in the past. The model for fertility decline
should be flexible enough for countries with enough data to let the data determine what the
TFR looks like. However, as the UN produces estimates and projections for all countries,
the modeling assumptions need to be strong enough for the results to be useful/realistic
for countries with less data. Our approach to deal with these two different situations is to
decompose fertility decline into a smooth systematic decline part, with “distortions’ added to
it. The systematic decline represents the fertility transition from high fertility to replacement
fertility (or something close to it) as a smooth time series. The systematic decline is modeled
with the double-logistic function as described in the previous section. In reality, the TFR
does not need to be a smooth curve, which is taken into account by adding the distortions
to the smooth decline curve. For years without data, the most appropriate trajectory for
the TFR will be given by the smooth decline curve with a random distortion term centered
around zero added to it. For years with data, the distortion will be more likely to be positive
(negative), if the observations are higher (lower) than the trend as given by the smooth
curve. An example is shown is Figure 3 for Burkina Faso.

Let f̃ct represent the TFR as modeled by the double logistic function. A distortion term
for country c in year t, denoted by εct, is added to get the ”true” TFR, fct:

fct = f̃ct + εct, (4)

In general, we expect the TFR to follow the theoretical trend, as modeled by assigning
normal distribution to the distortion terms with mean zero, and the distortion in one year
to be independent of the distortions in another year:

εct
ind
∼ N(0, σ2

ε ). (5)
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Figure 3: TFR in Burkina Faso; Observations from multiple sources (green), a trajectory of
the TFR (black), and the TFR as modeled by the double logistic function (red).

The variance of the distortions, σ2
ε , is the same for all countries, reflecting the assumption

that the extent to which the real TFR can divert from the systematic decline is comparable
among countries.

With the same notation as before, the annual decrements dc(f̃ct) as given by the double
logistic function at TFR level f̃ct are given by:

dc(f̃ct) = dcmax





−1

1 + exp
(

− ln(p2)
△c1

(f̃ct − tc1)
) +

1

1 + exp
(

− ln(p2)
△c3

(f̃ct − tc3)
)



 , (6)

with parameters θc = (△c1,△c2,△c3,△c4, dcmax), tc1 = △c4 + △c3 + △c2 + 0.5△c1, tc3 =
△c4 +0.5△c3 and p is set to 9. The level of f̃ct is determined by the parameters of the double
logistic function combined with a given level of the TFR in a particular year. Define τc as
the start year of the fertility transition, at which the the pace of the decline is 0.1dc,max.
Then f̃ct is given by:

f̃ct ≈







f̃c,t−1 + dc(f̃c,t−1), for t < τc.
∑

i △ci, for t = τc

f̃c,t−1 − dc(f̃c,t−1), for t > τc.

(7)

Note that we use an “approximately equal to” sign in (7) because the TFR in year t before
the start year τc is not given by f̃c,t−1 + dc(f̃c,t−1), but instead by f̃c,t−1 + dc(f̃c,t); the pace
of the decline is based on the TFR in the current year. However, as the pace of the decline
is small before the start year (less than 0.1dc,max), the difference will be very small and
the approximation as used in (7) avoids numerically difficulties when calculating the levels
of fertility before the start year. The start year of the fertility decline for the countries
considered here is assumed to be between 1950 and 2010:

τc ∼ UniDiscrete[1950, 2010]. (8)
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We take into account the uncertainty in the parameters of the double logistic function and
assume that the parameter vectors are comparable among countries. A Bayesian hierarchical
model is used to derive the country-specific distributions of each of the parameters (Gelman
et al. 2004). As before, the parameter vector of the double logistic function for country c
is given by θc with θci = △ci for i = 1, . . . , 4 and θc5 = dcmax. Denote the vector of the
hierarchical mean parameters by α such that

θci ∼ NVi
(αi, σ

2
i ), (9)

where αi and σ2
i are the hierarchical mean and variance for parameter θi. NVi

denotes a
truncated normal distribution with outcomes in the interval Vi. The truncated normal is
used to put restrictions on the parameters to get realistic decline curves, the intervals are
given by Vi = [0, 6] for i = 1, 2, 3, V4 = [1, 3] and V 5 = [0, 0.4] such that the the TFR
ranges △1 to △3 are restricted to be between 0 and 6 children, the “asymptotic TFR” △4

is between 1 and 3 children and the maximum fertility annual decrement dmax is restricted
to be between 0 and 0.4 child decrease per year.

The prior distributions for the hierarchical mean parameters are given by:

αi|σ
2
i ∼ NVi

(αi0, σ
2
i /κi), (10)

with κi = 1. Conjugate prior distributions are used for the baseline country-specific error
variance δ2

c , the variance of the distortion terms σ2
ε and the variance of the parameters in

the double logistic function σ2
i for i = 1, . . . , 5:

δ2
c ∼ InverseGamma(ay0, by0), (11)

σ2
ε ∼ InverseGamma(aε0, bε0), (12)

σ2
i ∼ InverseGamma(ai, bi), (13)

with prior parameters a· and b· based on fertility decrements for countries that have com-
pleted the fertility transition as estimated in the UN WPP 2004.

The parameters in the model are given by {αi, σ
2
i , θci, τc, δ

2
c , εct, σ

2
ε}. We use a Markov

chain Monte Carlo sampling procedure to get samples of the posterior distributions of each
of the parameters (Gelfand and Smith 1990). The posterior samples of {θci, τc, εct} combined
give the posterior sample of the TFR fct. The MCMC sampling algorithm is implemented
in the statistical package R.
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4 DATA QUALITY

The various observations of TFRs differ in quality, depending on a number of “data quality
covariates”, eg. the source (census, survey, vital registration, etc.), the time span on which
the observation is based or estimation method. In this section we will discuss the set-up and
use of a weighting scheme, based on the approach as used by UNICEF (Hill et al. 1998).
Each observation ycts is assigned a weight wcts, that is determined by a number of data
quality covariates. Larger weights are assigned to observations with data quality covariates
that tend to give better quality information, eg. based on more recent periods or longer time
spans.

A simplified version of the weight wcts for observation ycts is given by:

wcts = Source(ycts) ∗ Recall weight(ycts) ∗ (1 + log(Time spancts)), (14)

with default illustrative weights for type of data source for developing countries given in
Table 2. These default values should be thought of as a way to rank the different sources
relatively to one another, they are initial guesses subject to revision on a case by case basis
for each country and time period. The weights for time span and the recall weight (based
on midpoint of period before survey) shown in Figure 4. The decay function for the recall
weight in Figure 4(a) attempts to model the recall lapse problem with retrospective data,
which is a well known and documented issue with census and survey questions collecting
information for past events like lifetime fertility (i.e, total number of ever born children)
or maternity histories - especially from older women (Som 1973; Potter 1977; Becker and
Mahmud 1984; Pullum and Stokes 1997).

SOURCE WEIGHT

Census 0.25
DSS, Prospective studies, Longitudinal panel 1
Sample (Vital) Registration System 1
Life Table 1
Population register 0.5
Vital Statistics/Registration 0.25
Demographic and Health Survey 1
Reproductive Health Survey 1
World Fertility Survey 0.9
Multiple Indicator Cluster Survey (UNICEF) 0.8
Cross-sectional survey 0.75
Undefined survey 0.75

Table 2: Weights for different types of data sources in developing countries.

Observations of worse quality are more likely to have larger measurement errors. As
defined earlier, σ2

cts is the empirical variance of the measurement errors for observation ycts.
The goal of examining data quality is to find a “data quality multiplier” Mcts for the empirical
standard deviation of the measurement errors which reflects the quality of observation ycts.
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Figure 4: (a) Weights for the midpoint of the period before the survey (as given by a 4rth
order polynomial function with recall weight constant at 1 till 2.5 years before the survey).
The red dots are the rescaled weights given by Hill et al. (1998), the black dots are derived
using the ratio of weights for the 7.5 years versus 12.5 years recall period. (b) Weights for
time span.

With such a multiplier the empirical standard deviation of the measurement errors is equal
to:

σcts = Mctsδc, (15)

with δc reflecting the overall data quality/standard deviation of the measurement errors in
a country. Note that the data quality multiplier increases as data quality decreases, such
that the error variance increases. The multiplier Mcts for data quality of observation ycts

is a function of weight wcts. For a known outcome of the TFR fct, Mcts can be examined
as follows: First note that with (2) and (15) the expected value of the absolute difference
between an observation and the TFR is proportional to:

E|ycts − fct| ∝ Mctsδc. (16)

Define the absolute standardized residual rcts as the absolute difference between true and
observed TFR, taking into account the variability of the data in the country:

rcts =
|ycts − fct|

δc

. (17)

From (16) and (17) it follows that the expected value of rcts is approximately proportional
to Mcts:

Ercts ∝ Mcts. (18)

To examine Mcts, the absolute standardized residuals were calculated based on estimates
for the TFR for several countries (the TFR estimates were based on the UN WPP 2004
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estimates and preliminary results of our model). The residuals are plotted versus the weights
in Figure 5. If we choose Mcts to be a function of the weights that is close to the loess smoother
(shown in red), then Ercts ≈ Mcts, such that Mcts reflects the difference in standard deviation
between measurement errors. The black line is a least squares fit of a linear function to the
data points and gives the multiplier Mcts as a function of the weights.

Confidence intervals for the TFR for each observation are constructed using the expression
for the multiplier and an estimate of the baseline country-specific error variance, as shown for
India and Senegal in Figure 6. Data quality is better in India which gives smaller confidence
intervals for the TFR than in Senegal. The observations that are further away from the
general trend are more likely to be of worst quality and are more likely to have a larger data
quality multiplier, thus give a larger confidence interval for the TFR.
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Figure 5: Absolute standardized residuals (which are proportional to the standard deviation
of the measurement errors) versus the weights, with loess smoother (red) and the data quality
multiplier Mcts (blue).

A potential criticism on this approach is the arbitrariness of the weighting scheme, eg.
setting the weights for the source of the observation. We compared the results of the weight-
ing scheme approach with a data-driven approach for selected countries (details not included
here). In the data-driven approach we estimated the multiplier Mcts as a function of each
of the data quality covariates. The results for both approaches were relatively similar which
gives confidence in the weighting scheme. Moreover, the multiplier as given by the data-
driven approach gave slightly worse estimates of the standard deviations of the measure-
ment errors than than the multiplier based on the weighting scheme. Until a more complete
data set covering more countries and types of data sources becomes available, the weighting
scheme is chosen for modeling the difference in data quality.
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Figure 6: Difference in data quality; Each vertical line represents the 95% confidence interval
for the TFR based on one observation, with the length of the interval determined by the data
quality multiplier. (The colors are used to distinguish between the intervals, the observations
in the same year have been drawn apart for the same reason.)
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5 RESULTS

In the first part of this section we discuss the TFR predictions when applying a Bayesian
hierarchical model to the estimates of the TFR as given by the UN World Population Pro-
jections, the 2004 revision (United Nations, Department of Economic and Social Affairs,
Population Division 2005). This illustrates the uncertainty in the pace of the future decline,
ignoring the uncertainty in the estimates of the past. In the second part we will show the
preliminary results when applying the model to the raw data for some selected countries.

5.1 Predicting fertility based on UN estimates

The “data sources” in this section are the annual estimates of the TFR for all countries,
as given in the UN World Population Prospects, the 2004 Revision (United Nations, De-
partment of Economic and Social Affairs, Population Division 2005). For each country, only
the period for which the estimates are based on empirical data is considered. The Bayesian
hierarchical model us used to derive the country-specific projections.

Figure 7 shows the confidence intervals for the pace of the fertility decline in Thai-
land, Cameroon and Madagascar. The uncertainty in the pace of the fertility decline differs
substantively between the three countries. In Thailand the fertility transition has been com-
pleted, there is little uncertainty about the pace in the past decline. In Cameroon the TFR
is around 5 children, there is considerable uncertainty about the future pace of the decline.
For Madagascar, the uncertainty is even bigger, as the TFR is still around 6 children for
each woman.

Figure 8 shows the prediction intervals for future TFR for Cameroon and Madagascar.
The prediction interval for 2050 for Madagascar is wider than for Cameroon, for both coun-
tries the uncertainty is larger than one child. For Madagascar, the prediction interval is not
symmetric around the median prediction, there is more uncertainty towards higher TFR.
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(a) Thailand
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(b) Cameroon
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Figure 7: 95% Confidence intervals for the country-specific decline curves for (a) Thailand,
(b) Cameroon and (c) Madagascar. The black dots are the annual decrements as given by
the UN WPP 2004 estimates, the Fast/Fast and Slow/Slow trajectories are shown in green.
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(a) Cameroon
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Figure 8: Predictions for (a) Cameroon and (b) Madagascar; Median TFR (solid line) and
the 95% prediction intervals (dashed lines). The Fast/Fast and Slow/Slow trajectories are
shown in green, the black dots are the UN estimates.

5.2 Uncertainty in TFR estimates and projections

This section discusses the preliminary results of the uncertainty assessment of TFR estimates
and projections for 12 countries in Asia and Africa (Bangladesh, Burkina Faso, Bhutan,
Gambia, Guinea, India, Laos, Mali, Mauritania, Niger, Senegal and Thailand). The empirical
data set for each country contains unadjusted and adjusted fertility rates from different
sources, retrospective periods and estimation methods (direct, indirect).

The plots in Figure 9 show the 95% quantile based confidence intervals for the TFR in
Bangladesh, Burkina Faso and Guinea (represented by the vertical lines). The middle black
line is the the median TFR for each year and the observations are shown in green. The
TFR as given by the double logistic curve is shown in red in the background, most often it
is not visible because it matches up with the median TFR. Note the difference in the size of
the confidence intervals between the three countries, Bangladesh with relatively many data
points that are close together has small confidence intervals, while Guinea with fewer data
points and more difference between them has larger confidence intervals.

Figure 10 shows the projections up to 2050 for Bangladesh and Gambia. The UN Popula-
tion Division chooses one out of three trajectories to predict fertility decline, the Slow/Slow
and Fast/Fast trajectories are shown in turquoise. The high and low variant of the UN
projections are shown based on the Fast/Slow trajectory in blue. In Gambia the TFR is
most likely to decrease, but the data do not exclude the possibility that the fertility decline
has not started yet, which results in wide prediction intervals.

In Figure 11 we check the validity of our model; the results are shown for Bangladesh
and Bhutan. Each plot shows one trajectory of the TFR, with the 95% confidence interval
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for observed TFR. The observed data (plotted in green) is within its confidence bounds, and
simulated data (plotted in purple) looks similar to the observations, which gives confidence
in the modeling assumptions.
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Figure 9: Uncertainty around estimated TFR for Bangladesh, Burkina Faso and Guinea. The
solid black line is the median of the posterior sample for the TFR, the red line the median of
the posterior sample for the theoretical TFR as given by the double logistic function (often
not visible because it matches up with the true TFR). The observations are shown in green
and the vertical lines represent the quantile-based 95% confidence bounds.
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Figure 10: Median projected TFR (black, solid line) and 95% quantile based prediction
interval (black, dashed lines). The Slow/Slow and Fast/Fast UN trajectories are shown in
turquoise. The Fast/Slow trajectory is shown in blue, the high and low variant for this
trajectory are represented by the blue dashed lines.
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Figure 11: One trajectory of the posterior TFR and 95% confidence interval for observed
TFR (black), with observations (green) and simulated observations (purple).
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6 DISCUSSION

In this paper we propose a Bayesian hierarchical model to obtain probabilistic estimates
and projections of total fertility rates. Differences in data quality for observations within a
country are assessed by relating a standardized weighting scheme to the empirical variance of
the measurement errors. We quantify the country-specific uncertainty in future fertility, as
well as in the estimates of past levels of fertility. The preliminary results show the significant
amount of uncertainty in past and future TFR levels, and the difference between various
countries.

In order to produce projections of the population counts by age and sex, age specific
fertility rates are needed. An extension to the model for the TFR as discussed here is to
decompose the total fertility rate into age specific fertility rates, and to take into account the
data on age specific rates. Combining data on fertility with population counts and mortality
rates in the cohort component projection model allows for following cohorts over time and
can reduce the uncertainty in each of the components.

The model can be extended for countries with a stalled fertility decline, by allowing for
autocorrelation of the distortion terms.
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