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Abstract 

Background 

To support malaria control strategies, prior knowledge of disease risk is necessary. 

Developing a model to explain the transmission of malaria, in endemic and epidemic 

regions, is of high priority in developing health system interventions. We develop, fit and 

validate a non-spatial dynamic model driven by meteorological conditions that can 

capture seasonal malaria transmission dynamics at a village scale in a malaria 

holoendemic area of north-western Burkina Faso. 

Methods 

676 children aged 6-59 months took part in the the study. Trained-Interviewers visited at 

home weekly from December 2003 to November 2004 for Plasmodium falciparum (P 

falciparum) malaria infection detection. Anopheles daily biting rate, mortality rate and 

growth rate were evaluated. Digital meteorological stations measured ambient 

temperature, humidity and rainfall in each site. 

Results 

The overall P falciparum malaria infection incidence was 1.1 episodes per person year. 

There was a strong seasonal variation of the P falciparum malaria infection incidence 

with a peak observed in August and September corresponding to the rainy season and 

with a high number of mosquitoes. The model estimate of monthly mosquito abundance 

and the incidence of malaria infection correlate well with observed values. The fit was 

sensitive to daily mosquito survival and daily human parasite clearance. 

Conclusion 

The model has shown a potential for local scale seasonal prediction of P falciparum 

malaria infection. It could therefore be used to understand malaria transmission dynamics 

using meteorological parameters as the driving force and to help district health in 

identifying the risk period for more focused interventions. 

 

Keywords: Meteorology, local scale, modelling, prediction, Plasmodium falciparum 

malaria, underfive year, endemic region 
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Introduction 
Malaria continues to be a deadly disease, and action towards its control remains 

challenging for researchers and policymakers. To support control strategies, prior 

knowledge of disease risk is necessary. Developing a model to explain the transmission 

of malaria, in endemic and epidemic regions, is of high priority in developing health 

system interventions. As malaria is a vector-borne disease, and the life cycle of its vector 

drives the transmission, the female Anopheles mosquito. This life cycle, as well as that of 

the within-vector parasite, in turn is dependent on the microclimate. 

 

Since the early 20
th

 century, there have been attempts to understand malaria transmission 

dynamics, through mathematical modelling, to support control efforts. Ross developed 

the first model to predict malaria transmission and spread of the disease, and later 

concluded that increasing vector mortality significantly could eradicate malaria [1, 2]. In 

the 1950s, George Macdonald, building on Ross’ model, concluded that, at equilibrium, 

the weakest link in the cycle of malaria transmission is the adult female Anopheles [3]. 

His conclusions formed the basis of the global malaria eradication campaign, with DDT 

targeted at adult female Anopheles. In the 1970s, Dietz and Molineaux, in the Garki 

project, developed a more sophisticated model, clearly considering human immunity 

interacting with transmission [4, 5]. The model was correct in its ability to simulate 

malaria epidemiology in Garki, given entomological input, and it provided comparative 

forecasts for several specific interventions [6]. 

 

Further, Halloran and colleagues clearly considered the population-level effects of 

potential stage-specific vaccines [7]. Since then, malaria modelling has drawn significant 

attention. The development of computers has allowed the basic concepts of various 

compartmental models to be reduced to the individual level. Populations are modelled as 

large numbers of interacting individual humans and individual mosquitoes, each with its 

own characteristics and dynamics [6]. Further steps toward biological realism have begun 

to include the effects of weather [8, 9, 10, 11, 12, 13, 14, 15, 16]. 

 

The lack of data in many components of malaria transmission has restricted modelling 

efforts to a regional scale, since a significant pool of data is needed to test and fit the 

different sets of parameters. Even though available models are informative for developing 

global, regional or national malaria control strategies, they are limited in their 

applicability at local sites. However, local conditions are the main drivers of malaria 

transmission [17]. Thus, better understanding of these conditions and transmission 

dynamics through modelling may be more informative and relevant for local control 

efforts.  

 

This study elected to develop and validate a non-spatial dynamic model, driven by 

meteorological conditions, which can capture seasonal malaria transmission dynamics, at 

the scale of a single village. This was achieved by using comprehensive field data that 

include incident cases of human P falciparum malaria infection, as well as entomological 

and meteorological data. The focus for human infection was on children under five years, 
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since they are the most vulnerable, and because most infections in this age group will be 

symptomatic and, therefore, more easily detected. 

 

Methods 

Study sites 

The study was conducted in the town of Nouna and the villages of Cissé and Goni. These 

three sites are part of the Nouna Demographic Surveillance Systems (DSS) area [Error! 

Reference source not found.]. Others detail description are given elsewhere [19]. 

Study population 

676 children (Cissé: 171, Goni: 240 and Nouna: 265), aged 6 to 59 months, took part in 

the study. The children were selected at each site by systematic cluster sampling of 

households from the DSS database. Description of the study population is given 

elsewhere [20]. 

 

Active case detection: P falciparum infection 

In each site, site-based interviewers visited weekly the children to assess their P 

falciparum malaria infection plasmodium status and collect housing conditions data. The 

case detection methods are extensively described in Yé and Colleagues [20]. The 

outcome measure was a Pf infection episode, defined as an axillary temperature >= 

37.5°C plus a positive parasite test. 

 

Entomological data 

Mosquito population abundance was monitored using a standard CDC Light Trap (LT) 

[21] from December 2003 through November 2004. Mosquitoes were captured on the 1
st
 

and 2
nd 

day of each month at each site in four randomly selected houses. 

 

LT fitted with incandescent bulbs were installed close to human volunteers sleeping 

under untreated mosquito nets in these houses for two consecutive nights from 18:00 to 

06:00 hours. In addition, we used the Human Landing Collection (HLC) method, which 

involves one person sitting inside an uninhabited house and another outside, collecting 

mosquitoes that land on their exposed legs using torchlight and test tubes. This was done 

in two shifts (18.00 to 24.00 hours and 24.00 to 06.00). HLC volunteers gave informed 

consent. They were given malaria prophylaxis and checked for fever for a fortnight after 

their participation in the study. 

 

Field supervisor transported the mosquitoes caught to the laboratory in a cold-box. A 

technician in entomology counted and sorted by species the specimens. He classified 

mosquitoes caught by LT and HLC as ‘unfed’, ‘partly-fed’, ‘fully fed’, ‘semi-gravid’ or 

‘gravid by external inspection (LT) or dissection (HLC). The technician checked for 
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parity the ovaries of unfed HLC mosquitoes as described by Detinova [22] and Gilles & 

Warrell [23]. 

 

The age structure of the An. gambiae population was assessed by calculating the parity 

(number of times eggs laid previously). A high fraction of nulliparous mosquitoes 

(mosquitoes that had never laid eggs) means a young population. This help to estimate 

the proportion of infectious vector to calculate the value of infectious bite rate parameter. 

 

Indoor human bite rates [3] were calculated for each month and site, as follows: Human 

bite rate: nPBsma = , where Bs is the number of An. gambiae caught indoor by HLT; 

P is the number of people involved in the capture, and n is the total number of nights. 

 

An. gambiae mortality (k-value) was calculated of each month and site. This expresses 

the number of vectors surviving from the egg stage to the adult stage. The monthly 

number of vectors was transformed into a natural logarithm. For a month with none 

vectors the logarithm of one was calculated. Based on previous studies, we assumed the 

maximum number of eggs oviposited by individual mosquitoes was, m=100 eggs [24, 25] 

on average. To calculate k-value the following formula was: log(potential eggs, month 1) 

= log (adults+1, month 1) + log(maximum individual fertility), and Kmonth1 = log 

(potential eggs, month 1) - log(adults+1, month 2). [26]. The resulting k-value was used 

to calculate the monthly mortality rate (m), important parameter of our model, using the 

formula: 
kvalueM −−= 101 . 

 

Measurement of meteorological parameters 

Sites based meteorological units measured rainfall, temperature and humidity on the 

ground. Unit were set for 10-second measurement cycles and 10-minute recording cycles. 

Detail is given elsewhere [20] 

Model development 

Model description 

The model was based on the so-called compartmental model developed by Ross [1] and 

adapted by MacDonald [3]. These models were based on the assumption that the human 

population can be subdivided into three compartments: 1) Susceptible: do not have 

malaria; 2) Infected: have the parasite, but it has not yet developed to the gametocyte 

stage; and 3)_Infectious: are symptomatic and have the parasite at the gametocyte stage. 

Similarly, the vector population can be classified as: 1) Susceptible (do not carry the 

parasite); 2) Infected (fertilization and sporogony); and 3) Infectious (sporozoites in the 

salivary glands). The transmission process started when an infected vector takes a blood 

meal from a human. The changes among the subpopulations in each compartment are 

determined by a set of parameters, like mosquito mortality, bite rate, growth rate, 

sporogony and gonotrophic cycle duration, and human malaria-induced mortality and 

parasite clearance rates. Most malaria models were constructed on these basic 

assumptions, and so was the Mckenzie and others [27] model from which our model is 
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derived. In our model, the mosquito population was divided into two subpopulations, 

non-infected and infected, since we assumed that every mosquito that feeds on an 

infected human would have about 100% probability of becoming infectious if it survived 

long enough. The state and transition of the model (Figure 1) shows the changes in each 

subpopulation given different parameters. These parameters are labelled with Greek 

characters and defined in Table 1. This model is an extension of previous model which 

was set to detect malaria in the dry season [28]. This model was driven by entomological 

data and did not simulate le dynamic of the vector population. The current one has vector 

population dynamic which is driven by temperature and rainfall. Since the dry season in 

the study region is characterised by total absence of rainfall a model driven by rainfall 

may not be appropriate to capture transmission. The appendix provides the details of the 

mathematic expressions of the model and the specific assumptions. 

 

 

Figure 1: State and transition of the dynamic model. Human: S: susceptible, I: infected, G: 

infectious; Vector: U: susceptible, F: infectious 

 

Table 1: Definition of model parameters 

Parameters Definition Source 
α  Daily natural per-capita human birth 

rate 

DSS_ Recalculated in daily birth rate 

1β  
Daily natural per-capita human 

death rate 

DSS_ Recalculated in daily death rate 

2β  
Daily malaria-induced per capita 

death rate in humans 

Noun DSS_ Recalculated in daily 

death rate 
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q  Daily  malaria clearance rate in 

humans 

Fitted and compared with field data 

v  Time delay for human host, from 

becoming infected to becoming 

infectious 

Dietz and others. 1974 ; Gu et al. 

2003 

m  Daily mortality rate of vectors Calculated and fited 

r  Daily mosquito per-capita intrinsic 

growth rate 

Theoretical maximum of 10, precise 

value fitted from model. 

B Daily bite rate of vectors The lower bound if 1/gonotrophic 

cycle, precise value fitted from model. 

b  Daily rate at which vectors bite 

humans  

b=B*HBI 

γ  Daily probability of vector 

becoming infected after infectious 

bite 

Fitted 

c  Time delay for vector from infection 

to infectious stage 

Sporogonic cycle, Calculated using 

Detinova formula 111/(T°C-18) 

tK
 

Environmental carrying capacity 
tK
=Pmm*akt 

 

Model implementation, simulation and testing 

The model was implemented on a Microsoft Excel sheet using a set of difference 

equations with one day step. Each of the variables representing the human and mosquito 

subpopulations was followed in a separate column. In addition, at each stage, the model 

calculated the daily changes of these variables. An offset function was used for processes 

with delay, such as mosquitoes becoming infectious at the end of the sporogonic cycle. 

The model was driven by temperature, which defines the sporogonic cycle, and by 

rainfall. Both meteorological values were used to calculate the carrying capacity (kt) 

 

The model’s goodness of fit was determined using the residual sum of squares (SS) of the 

difference between the predicted and the observed values of all months. The value of 

each parameter was determined successively by minimizing SS (Table 2). This was 

continued for all parameters, until no further improvements in fit were possible, which 

was the common minimum for all parameters. The Microsoft Excel “Solver Add-In” 

function, which uses the Generalized Reduced Gradient (GRG2) method, was used for 

this process. 

Table 2: Model parameter values and bounds 

Parameters Cissé[bounds] Goni[bounds] Nouna[bounds] 

α  0.000126 0.000126 0.000126 

1β  0.000096 0.000096 0.000096 

2β  
0.000041 0.000041 0.000041 

q
 0.12 [0.10-0.17] 0.12 [0.10-0.17] 0.12 [0.10-0.17] 

v  10 days [9-15] 10 days [9-15] 10 days [9-15] 
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r  2 2 2 

m  0.15[0.06-0.20] 0.15 [0.07-0.22] 0.14[0.05-0.22] 

b  0.56[0.5-0.6] 0.56[0.5-0.6] 0.56[0.5-0.6] 

γ
 0.79 0.79 0.79 

c  10.6 days [9-14] 13.3 days [9-14] 9.9 days [9-14] 

 

The model predicted mosquito abundance and malaria incidence for each month, site for 

year 2004. Output values were normalized versus the expected, by multiplying each 

predicted monthly value by a ratio which was obtained by dividing the observed highest 

value by the predicted value month. The variance for the normalized prediction and 

observed values were calculated to assess the fit of the model for each site. Small 

variance suggests good representation of the field data by the model. The fit also was 

presented graphically, by plotting the monthly predicted and observed values. 

 

Results 
During follow up, out of the 676 children, 20 (3.0%) left the cohort, either because of 

death (11) or migration out of the study sites (9). Children were not always present at 

each visit; therefore, the overall person-years (PY) observed were 594.9. 

 

Plasmodium falciparum malaria infection incidence 

Out of 1274 fever episodes, 635 were positive for Pf malaria infection, giving an 

infection incidence of 1.1 episodes per PY. The lowest incidence was observed in Nouna 

(0.8 per PY). In Cissé and Goni, the incidences were 1.2 and 1.3, respectively, but not 

significantly different. There was strong seasonal variation in the incidence, with the peak 

August and September (Figure 2) 
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Figure 2 Plasmodium falciparum malaria infection incidence rates, per month and site 

 

Entomological patterns 

Using the LT and HLC method combined, with all species included across all sites, 

16657 mosquitoes were caught. The largest proportion of captured mosquitoes was Culex 

(72.19%), followed by An. gambiae (15.57%), Aedes (6.3%), Mansonia (4.6%), An. 

funestus (1.5%) and An. nili (0.1%). The highest number of An. Gambiae was caught in 

Goni (n=1431), followed by Cisse (n=598) and Nouna (n=565). 

 

Meteorological conditions 

All sites presented a similar pattern of meteorological conditions. The rainfall was 

concentrated in the months from May to October. The total amount of rainfall was higher 

in Nouna than in Cissé or Goni .The relative humidity pattern followed that of rainfall. 

The mean temperature was more or less similar at all sites. The average mean 

temperature for the whole period was lower in Goni, however, with high variation versus 

Cissé and Nouna. Detail description of the meteorological condition is give elsewhere 

[20] 
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Model simulation 

Simulation of daily Anopheles gambiae abundance 

At all three sites, rainfall was followed by an increase in the mosquito population two 

weeks later (Figure 3). 

 

In Cissé, mosquitoes were few (fewer than ten per day) over the first 120 days of the 

year, corresponding to January through April. The first peak in mosquito numbers was 

observed on the 122
nd

 day of the year, followed by a second peak, one month later. These 

peaks all were observed after a peak in rainfall. Two other peaks in mosquito abundance 

were observed after the second peak. These increases corresponded to July and August, 

months with high rainfall. From August on, the vector population decreased significantly 

toward the end of year, after the end of the rainy season. 

 

In Goni, the simulation produced several peaks in the vector population, following each 

peak in rainfall. As in Cissé, these peaks were clustered within a period from the 121
st
 to 

301
st
 days of the year. This period corresponds with May through October. In contrast to 

Cissé, although there was some daily variation, the vector population remained high over 

this period, probably because of the higher amount of rainfall. After the end of the rainy 

season, we observed a drop in the mosquito population. 

 

The Nouna site had about the same pattern of mosquito abundance and distribution as 

Goni, even though rainfall was more abundant. The mosquito population increased 

shortly after the onset of the rainy season. It remained high (about 100/ day), with some 

variation until the end of the rainy season, when levels decreased to less than ten 

mosquitoes daily. As at the two other sites, the highest peak in the mosquito population 

was observed about two weeks after the highest peak of rainfall in the August. 
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Figure 3: Mean temperature and rainfall-based predictions of An. gambiae population abundance for 

each site: a) Cissé, b) Goni and c) Nouna.
1
 

Monthly prediction of Anopheles gambiae abundance compared to 
observed vector numbers 

The model predicted a peak in vector numbers for all sites in September, matching the 

observations for Goni and Nouna (Figure 4). In Cissé, the peak in the number of caught 

mosquitoes was observed one month earlier, in August; this, therefore, did not match the 

prediction. Consistent across all sites, the model prediction matched with observed 

numbers from January through April, though the numbers were small. In June, in Cissé 

and Goni, there was a predicted increase in mosquito population which was not observed 

in the field. At all three sites, there was a significant decline (both predicted and 

observed) in the vector population in October, and both remained low in November and 

December. 

 

                                                 

1
 Simulated An. gambiae population abundance (black curve) is plotted against the daily 

temperature (red curve) and the preceding two weeks’ cumulative rainfall (blue curve). 

The simulation was done daily for two years (2004 and 2005). The year 2004 was 

considered to be the training (warm-up) period of the model. As temperature and rainfall 

data for the year 2005 were not yet available, the conditions were assumed to be similar 

to 2004; therefore, temperature and rainfall were replicated. 
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Overall, the model predictions fit the observed data. The fit was better in Nouna, where 

we observed the least variance (∆= 2)( ii PO −∑ = 1696.5, SD=8.8); where Oi is the 

observed number in the vector population in the month, and Pi is the number predicted by 

the model. The variances for Goni and Cissé were 11630.4 and 35292.2, respectively. 

 

Figure 4: Predicted monthly An Gambiae, compared to observed vector numbers in Cissé (a), Goni 

(b) and Nouna (c). The monthly prediction (broken line) of An. gambiae is compared with those 

caught in the field (full line). 

 

Monthly predicted P falciparum malaria infection episodes compared 
to observed 

 

Incident cases of Pf malaria infection among children also were simulated by the model, 

per site and per month (Figure 5). For all sites, there was a seasonal pattern in Pf 

infection incidence. From December through June, the incidence decreased progressively, 

and then increased from July through September, after which another decrease was 

observed. Although the predicted and observed incidences were similar, there were some 

specific variations, expressed by the variation ∆. The model predictions match the 

observed episodes better in Goni, where the smallest variance was observed (∆=626.8 

SE=6.6), versus Nouna (∆=733.7, SE=4.8) and Cissé (∆=882.8, SD=6.7). 
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Figure 5: Predicted monthly Plasmodium falciparum infection episodes versus observed episodes in 

Cissé (a), Goni (b) and Nouna (c) 

Discussion 
A dynamic model to predict malaria transmission among children under age five was 

developed. The model is composed of five difference equations that express changes in 

infectious status of the human and vector populations given temperature and rainfall 

conditions. The model simulated the vector population abundance and the human P 

falciparum malaria infection incidence for each of three ecological settings over one year. 

Most of the model parameters were calculated based on field data, and fitted. The model 

was a good representation of P falciparum malaria infection in the region. The predicted 

mosquito populations and P falciparum malaria infection incidences were close to 

observed values. 

 

Simulation of mosquito dynamics 

Rainfall and temperature drive the vector population abundance. The dynamic model 

represented this adequately at all sites. Peak vector numbers observed about two weeks 

after a peak in rainfall is characteristic of the vector–rainfall relationship. Indeed, in ideal 

temperatures (28°C) and conditions, the development of An. gambiae from the egg to 

adult stage takes about 14 days [25, 29]. The presence of water pools generated by 

rainwater allows the mosquitoes to lay their eggs, which then develop into adult 
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mosquitoes if the water pools are sustained for at least 14 days. Some potential breeding 

sites could be expected in the area surrounding wells throughout the year. This is because 

of the constant spillage of water when people are fetching it. Sometimes, an intentional 

pool is created for purposes of watering cattle. However, these pools are not common and 

only produce a few the mosquitoes. Because of the dry conditions of the area, the most 

important source of breeding sites remains rainfall water, and this explains the high 

abundance of mosquitoes during the rainy season. Rainfall was the main driver of vector 

abundance. As expected, at all sites the model detected few vectors (less than ten) during 

the dry season; vectors persisted, despite the total absence of rainfall during this season, 

probably because of breeding sites created around wells. 

 

Monthly predictions of the number of vectors fit the numbers caught in the field, and, 

both predicted and observed numbers followed a similar pattern at all sites. This suggests 

the model is a good representation of mosquito population dynamics. Some difference in 

the timing of peak abundance was observed in Cissé; where there was a deviation of one 

month between the predicted (September) and observed (August) peak. This may have 

been because of the soil texture in Cissé, which probably was not able to hold water on 

the surface long enough to allow the vector development. However, this was not captured 

by the current model. Consistent across all sites, the model predicted vectors in May and 

June, though no vectors were observed in the field. This could be explained by the model 

being sensitive to any amount of rainfall; whereas, in the field, the quantity of rainfall in 

May and June was not enough to keep vector breeding sites. 

 

Although the model produced a fair representation of the mosquito population, it could be 

improved by also simulating the immature stage (eggs, larvae, pupae) of the vector, 

which is strictly dependant on surface water availability. Mosquitoes need water to 

produce and the ovi-position rate is assumed to be proportional to mosquito numbers and 

the daily rainfall filling local water pools [16]. Further, direct correlation of rainfall 

amount with mosquito abundance could result in some estimation bias. This is because 

the availability and duration of surface water also is dependant upon the evaporation 

index, soil texture and moisture index. High evaporation will cause quick-drying out of 

pools, whereas a lower consistency of soil texture and dry soil will lead to faster 

infiltration. 

 

Simulation of Plasmodium falciparum malaria infection cases 

Although some monthly differences were observed, probably due to the small number of 

cases, the general seasonal pattern was represented well by the model. However, the 

model is not sensitive to the sporogonic cycle. This implies that a small variation in 

ambient temperature would not result in major changes in incidence, and that time from 

human infection to gametocyte development is not a key in determining incidence rates. 

 

The daily vector bite rate was found to be 0.56 per day. This would represent a 

gonotrophic cycle of 1.5 days, if every bite achieves a full blood meal. However, this is 

not always the case, as mosquitoes often return for second bites, if interrupted during 

their meal. Thus, the gonotrophic cycle may be longer than predicted by this model. The 
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model is insensitive to precise values of b, (human bites per day) and this reduces the 

validity of the model as an estimator of gonotrophic cycle length. In addition, the model 

was developed assuming all vectors are anthropophillic, which is not necessarily the 

case. In fact, we expect this parameter to vary from one season to another [30]. 

 

The incidence of P falciparum malaria is dependent on two key parameters, which are the 

daily mortality rate of the vector and the parasite clearance rate in humans. These 

parameters both can be influenced by public health interventions. The daily mortality rate 

of the vector can be increased by vector control methods, such as indoor residual 

spraying, and vector numbers can be reduced by removing breeding sites. Effective 

treatment of patients will increase the malaria clearance rate in human (q), by protecting 

not only sick individuals, but also the surrounding population. The parasitological 

clearance rate (12%) was slightly slower than can be deduced from Müller and others. 

[31], who witnessed 27% seven-day parasitological failure with choroquine treatment. 

This would reflect 17% daily clearance. This discrepancy probably is a result of Müller 

and colleagues [31] having measured the asexual form clearance, while our focus was on 

the sexual form.  

 

The model is driven by parasitological data for children under five, while the entire 

population contributes to the transmission. To account for this effect, we would need to 

survey the general population. This would require checking large numbers of 

asymptomatic individuals for subclinical infections. This raised technical and ethical 

issues. Nevertheless, it was assumed the parasite prevalence among children under five 

was not unlike that of the general population, even though clinical symptoms will not be 

present in many older individuals. 

 

The model can be a useful tool for malaria control strategies especially in a low 

transmission context. It has the ability of quantifying the context specific risk of malaria, 

a precondition for cost-effective interventions. Although, the model was developed based 

on data collected in a specific context it can be used in a different setting. In that case the 

parameters would have to be measured locally and fitted without the need to change the 

model formulation. The fitting of the model was based on field data to make sure that 

mathematic formulas are plausible and describe the biological process of the transmission 

of the disease. To be used to predict malaria incidences in other settings the critical inputs 

will be rainfall and temperature data, which nowadays can be obtained for satellite 

sources. Other parameters maybe fitted of obtained from literatures 

 

Other strength of the model lies in its simplicity and its respect for the biological process 

of malaria transmission on the ground. However, to be cost-effective, the model major 

drivers which are rainfall and temperature could be derived from remote sensing data as 

ground based measurements are expensive to implement at local scale. 

 

Conclusion 
The model shows potential for local-scale seasonal prediction of P falciparum malaria 

infection rates and distribution. Thus, it could be used to understand malaria transmission 



 16 

dynamics, using meteorological parameters as a driving force, to help local district health 

bodies to identify the risk period for more focused intervention. However, we do not 

pretend to have captured 100% of the transmission dynamics. Further improvement to the 

model can be made. 
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Appendix: Model description 
 

The dynamic concept in contrast to the static concept, tries to capture the transmission 

and biological processes of the disease. The model was based on the assumption that the 

human population is divided into three categories: Susceptible (S), Malaria- infected (I) 

and infectious (G) and mosquito population is classified into two compartments: non-

infections (U) and infectious. 
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Equations 1-3 describe the change in the human population while equations 4-5 describe 

change in vector population. Each term is explained in detail below 

 

Change in uninfected human population 
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Equation 1 describes the changes in the uninfected human population and includes four 

terms: 

• The first term is the natural growth rate which is expressed by )( GIS ++α , assuming 

people are born healthy and irrespective of the health of the mother. As the model is 

simulated daily, this is expected to be negligible. 

• The second term is the malaria clearance expressed by )( GIq + . We assume that 

people clear the infection at a fixed rate from all stages of the disease. We also 

assume that there is no immunity and no superinfection (additional infection starts 

after a new hepatic stage), contrary to Dietz et al (1974) 

• The third term is the human infection expressed by
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GISGIS
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1  is the probability of a single person not getting a bite from a 

specific mosquito; bF is the number of infectious mosquito biting in a day, given a 

daily biting rate per mosquito of b, 
bF

GIS

GIS









++

−++ 1 is the probability of a specific 

person not getting bitten by any of the infectious mosquitoes. 
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the probability of a specific person getting bitten by one or more of infectious 

mosquitoes. Multiplying by S gives the number of uninfected peoples being bitten by 

at least one infectious mosquito in a day. 

• The fourth term is /31 the death rate in the population from all causes except malaria, 

assuming there is not link with malaria. Then /31S is the number of death within the 

uninfected population. 

In addition the following assumptions were made 

1 A mosquito bites only once in a gonotrophic cycle. 

2 Mosquitoes bite randomly. No specific attraction to any sub population. 

3 The stage of infection does not influence the mosquitoes biting habits. 

4 An infectious bite necessarily causes Plasmodium falciparum infection. 

 

Change in infected human population 
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Equation 2 describes the changes in the infected (but not infectious) human population 

and includes three terms: 

• The first term is S
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uninfected people being bitten by at least one infectious mosquito in a day. 

• The second term 
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1 represents people that became infected v 

days ago. They have now mature gametocytes and are infectious. However not all of 

those people are still available. They may have either died of malaria or other disease 

or they may have cleared their infection. For each day the probability of leaving the 

group early will be /31 +/32 +q. The probability of remaining in the group for a day is 

)(1 21 q++− ββ . The probability of completing the whole process of v days is 
vq))(1( 21 ++− ββ  

• The third term Iq)( 21 ++− ββ  represents the number of people that leave the 

infected stage by death or clearance. 

In addition, the following assumptions were made: 

1. /32 is constant and does not change according to the stage of the infection. We 

know the mortality could change per stage. We may leave it out of this 

equation for biological reasons. 

2. q is not specific to the stage of the infection. We have two types of q. 
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clearance because of treatment and clearance because of immune system 

(natural clearance). We could also decide there is no natural clearance. We 

also know that drugs are stage specific (liver stage, blood stage). 

Change in infectious human population 
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Equation 3 describes the changes in the infectious human population and includes two 

terms. 

• The first term
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• The second term, Gq)( 21 ++− ββ  represents the number of people that leave the 

infectious stage by death or clearance 

 

Change in the size of uninfected vector population 
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Equation 4 describes the changes in the uninfected vector population and includes three 

terms. 

• The first term
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)(  is the maturation of the larval stage. This term describes 

the number of larvae surviving to become mature mosquitoes. The numerator is the 

number of larvae expected to survive to maturity under ideal conditions. U+F is the 

total number of mosquitoes, assuming infectious status does not influence the 

fertility. r is the per mosquitoes fertility (number of eggs oviposited per day 

multiplied by the probability of each to develop into a mature mosquito under ideal 

condition). The denominator reflects the decrease in survival because of non-ideal 

conditions. The U+F expresses the density dependent limitation on larvae survival. 

The precise characteristic of this dependence is determined by the carrying capacity 

Kt. In principle, Kt varies with temperature, rainfall and humidity and should be 

measured from the field. Thus the number of larvae increases with the number of 

mosquitoes but is limited by carrying capacity. The number of the larvae surviving is 

dependent on the surface water available. As at this stage of research a full evapo-

transpiration model is not available, Kt is therefore assumed to be proportional to the 

previous weekly aggregated rainfall. Kt =Pmm*akt. The value of akt is to be 

determined empirically. 

• The second term,
GIS

G
bU

++
 represents the new infections of mosquito at time t. 

bU is the number of uninfected mosquitoes biting in a day. The fraction is the 
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probability of a single mosquito biting at random an infectious human out of the total 

human population. We multiply this by γ to reflect the probability of becoming 

infected. 

• The third term, mU, is the mortality of uninfected mosquitoes or the number of 

uninfected mosquitoes dying per day. m was calculated from the k-value (log 

generation mortality). In the study site setting, due to the constantly warm 

temperature, the gonotrophic cycle varies between 2 and 3 days. The survival of 

mosquitoes depends on the gonotrophic cycle and due to the stability of the cycle m 

was treated as constant. The precise value of m was empirically determined by fitting 

the model. 

In addition the following assumptions were made: 

1 Mosquitoes bite randomly and independent of their infectious status 

2 Survival is independent of the infectious status 

 

Change in the size of the infectious vector population 
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Equation 5 describes the changes in the infected vector population and includes two 

terms: 

• The first term, γ
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− )1(  is the number of mosquitoes infected c days 

ago, reduced by the survival. c is the sporogonic cycle given by Detinova [32] as 

111/(T°-18).  

• The second term mF−  is the number of infectious mosquitoes dying in a day. 

In addition the following assumptions were made: 

1 Infectious mosquitoes never clear their infectious status. 

2 Mosquitoes are either infected or infectious 

 

 


