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ABSTRACT 

 In this study, we develop 2 two-stage mixed models seeking to reduce the 

selection biases in estimating longitudinal outcomes of the number of functional 

limitations, one parametric and one non-parametric.  The parametric model is a two-step 

perspective, developed as an extension of Heckman’s traditional two-step linear 

regression model, whereas the nonparametric mixed model uses a retransformation 

approach taking into account the prediction biases given skewed error distributions across 

time.  Our empirical analysis found that the nonparametric adjusting method is the most 

appropriate approach for analyzing large-scale survey data for transitions in the number 

of functional limitations in older persons. 
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INTRODUCTION 

 During recent decades, the mean age of the population has sharply increased in 

the United States.  Given the significant impact of such demographic changes on the 

demands for health services and on fundamental social aspects of life, studies analyzing 

the health of older persons have become topics of emerging interest.  Much of this 

research relies on measures of health status as integral variables, and substantial attention 

has been placed upon transitions in an older person’s functional limitations (Crimmins et 

al., xxxx; Liu et al., 1995).  Yet demographers have devoted surprisingly little effort to 

the development of efficient statistical models to describe and analyze longitudinal 

outcomes of functional status in older persons. 

 Analyzing longitudinal data of functional status transitions poses special 

challenges to demographers and epidemiologists.   Although most longitudinal surveys 

collect random and unbiased samples at baseline, a considerable proportion of the 

baseline respondents will not survive to the ensuing investigations, particularly among 

older persons.  As a result, the longitudinal health outcomes would be based on several 

follow-up samples selected by values of the dependent health variable, since physically 

frailer and environmentally disadvantaged persons tend to be more likely to die.  Direct 

application of conventional one-step linear mixed models would lead to inconsistent 

estimates of the effects on the number of functional limitations, in turn resulting in 

misleading conclusions on patterns of health transitions. 

 In this research, we develop two generalized mixed models to address this 

selection bias problem in estimating longitudinal outcomes of the number of functional 

limitations, one parametric and one non-parametric.  The parametric model is a two-stage 
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perspective, developed as an extension of Heckman’s traditional two-step linear 

regression model, whereas the nonparametric mixed model uses a retransformation 

approach taking into account the prediction biases given skewed error distributions.  

Lastly, we utilize empirical examples to demonstrate the new methods developed in this 

research and discuss merits and weaknesses in each of those models. 

 

Impact of Selection Biases  

 We develop a two-stage regression model to demonstrate the selection bias 

problem in estimating the number of functional limitations, by adapting the traditional 

two-step linear models in econometrics.  In terms of an original sample of I observations 

and J time points, we first assume the existence of the number of functional limitations at 

each of the subsequent time points for those who have perished between two adjacent 

observation time-points.  We further assume that the number of functional limitations for 

the dead, denoted by Y
d
, is greater than or equal to a constant C, and numbers of 

functional limitations for survivors, Y
s
, are all smaller than this constant. 

We begin with two longitudinal mixed models, one complete model that includes 

all members of the original sample and one truncated model that consists of survivors 

only, to clarify the impact of sample selection on estimates of the number of functional 

limitations, given by 

(1b)                                        ,

(1a)                                                       
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where Y represents the (n × 1) vector of observed data within the framework of a block 

design (n = I × J).  The matrix X is a (n × p) matrix for p -1 independent variables and Z 

is a (n × r) design matrix for the random effects.  β and γ are matrices of parameters for X 
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and Z, respectively.  The random effects are assumed to be normally distributed with 

mean 0 and variance matrix G.  The joint distribution of ε1 ε2 is assumed to be a singular 

distribution with covariance matrix σ12.  While the random error term ε1 can be assumed 

to be normally distributed with mean 0 and variance matrix 2

1σσσσ , we cannot readily 

assume that ε2 be normally distributed with mean 0, since the error term in equation (1b) 

might not be independent of the independent variables, as shown below.   

Because Y
d
 is not observable, we define a dichotomous factor δit that indicates the 

survival status for individual i between time t and t+1 (t = 0, 1, 2, J-1) and is used as a 

proxy for C, such that 

( )

( )
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 Specifically, we view the number of functional limitations at time t+1 as a joint 

distribution of two sequential events – the likelihood of survival between time t and time 

t+1 (St; t = 0, 1,2, J-1) and the conditional density function on the number of functional 

limitations (Yt+1) among those who have survived to t+1.  Given the aforementioned 

assumptions, the expected number of functional limitations for individual i at time t+1 

can be estimated by the following equation 

(((( )))) (((( )))) (((( ))))[[[[ ]]]]{{{{ }}}} (2)      . 1Pr1,E 11112222212)1( γγγγββββεεεεγγγγββββδδδδδδδδ iiiiiiitititi ZXCEZXXXY ++++−−−−<<<<++++++++============++++

 

If ε2 is independent of ε1, the conditional mean of ε2 is 0, and the sample selection 

process into the incomplete sample is random.  However, in many circumstances the 

conditional mean of the disturbance in the incomplete sample is a function of X1i and Z1i, 

as widely reported in mortality and health transitions literature.  As a consequence, 

estimation of equation (2) without considering the covariance between ε1 and ε2 would 
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lead to inconsistent parameter estimates and serious prediction biases.  Modeling 

transitions in the number of functional limitations thereby can be far more complex than 

applying a one-step mixed model. 

 

Model Specification 

 We attempt to develop two two-step mixed regression models to overcome the 

aforementioned selection biases in describing and estimating transitions in the number of 

functional limitations, one parametric and one nonparametric. 

(A) The two-step parametric mixed model. 

 There are a variety of statistical approaches to estimate survival rates, both 

continuous and discrete.  Since the outcome data in this analysis are discrete in nature, we 

develop a discrete survival model.  As the probit function is well behaved in describing a 

binomial distribution, we construct a probit mixed model to estimate survival rates 

between time t and time t+1 (t =0, 1, …., J – 1).  For individual i at time t, his or her 

chance of survival up to time t+1 can be modeled as 

(((( )))) (((( ))))
(((( ))))3                                                 1,- t3,......, 2, 1,t

1Pr

====

++++======== pitpititit ZXY γγγγββββΦΦΦΦδδδδ
 

where Φ(.) represents the cumulative normal distribution function (probit function).  

From this equation, we can obtain survival rates for each individual at J – 1 time 

observation intervals.  Then we save the estimate of Φ(Xβ + Zγ) for each individual in 

each observation period as an unbiased estimate of the survival rate. 

 Given the assumption on the latent number of functional limitations at time t+1 (t 

= 0, 1, 2, …., J-1) for those who have died between time t and time t+1 (δit = 0), a 
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survivor’s number of functional limitations is truncated on the right.  The inverse Mills 

ratio for individual i at time t+1 is therefore given by 
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Where φ(.) represents the standard normal density function.  Values of λ’s at time 0 (first 

wave) are all zero assuming there is no selection bias at the outset of the longitudinal 

investigation. 

 Given the variable λ created, we develop a conditionally unbiased truncated 

mixed model on the number of functional limitations at time t.  For individual i, the 

longitudinal mixed model can be written as 

(((( )))) (5)                                         ,1 3123333 εεεελλλλσσσσγγγγββββδδδδ ++++++++++++======== ZXYY  

where σ12 is a vector of covariance between ε1 and ε2, specified in the estimation process 

as the regression coefficients of λ.  The error term ε3 has mean 0 and variance 2

t
σσσσ  and is 

assumed to be uncorrelated with X3, γ and λ. 

 Notice that in Equation (5), the inclusion of λ and σ takes into account the 

covariance between two error terms, ε1 and ε2, thereby indicating that the joint 

distribution of two sequential equations, represented by Equation (2), is actually 

embedded in Equation (5). 

(B) The two-stage nonparametric mixed model. 

 When the assumption of normality for ε cannot be satisfied in estimating a 

longitudinal event, as is often the case in health transitions (Liu, 2000; Manning, Duan 
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and Rogers, 1987), Equation (5) cannot derive correct estimates of the number of 

functional limitations.  In this case, we extend Duan’s (1983) and Liu’s (2000) 

retransformation method in the context of transitions in the number of functional 

limitations.  The two-stage nonparametric mixed model is given by 

(((( )))) (((( ))))
(((( )))) (((( )))) (6b)                          ,log0

(6a)                                     0YPr
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where ξ serves as a nonparametric adjustment factor for selection bias from mortality.  

We fit the natural logarithm of the number of functional limitations to address the 

possible non-linearity of its distribution among those with any functional limitations.  

The expected number of functional limitations at various time points can be expressed by 

the following joint distribution: 

(((( )))) (((( )))) (((( )))) (((( )))).7                  ˆˆˆlogˆˆ1ˆ
51514241 ξξξξγγγγββββγγγγββββΦΦΦΦ ZXZXSYE ++++++++========  

 We use empirical data to estimate values in ξ.  First, assuming X to have full rank, 

we have 
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When the error distributional function F is unknown, we replace this cumulative density 

function F by its empirical estimate jF̂  at time-point j, which is referred to as the 
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Where nj is the number of observations at time j with the number of functional limitations 

greater than zero, and 5β̂βββ  and 5γ̂γγγ  can be estimated by employing the maximum 

likelihood procedure without considering random disturbances (Liu, 2000).  When the 

sample size for a longitudinal analysis is large enough, such a smearing estimate for the 

retransformation in log-linear equations is consistent, robust and efficient (Duan, 1983; 

Liu, 2000; Manning et al., 1987). 

 The estimate of ξ at time-point j is thus given by 

(((( )))) (((( ))))[[[[ ]]]]
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Empirical Examples 

Data used for empirical demonstrations come from the Survey of Asset and 

Health Dynamics among the Oldest Old (AHEAD), a nationally representative 

investigation of older Americans.  This survey, conducted by Institute of Social Research 

(ISR), University of Michigan, is funded by National Institute on Aging as a supplement 

to the Health and Retirement Study (HRS).  To date, the Survey consists of six waves of 

investigation.  The Wave I survey was conducted between October 1993 and April 1994.  

Specifically, a sample of individuals aged 70 or older (born in 1923 or earlier) was 

identified throughout the HRS screening of an area probability sample of households in 

the nation.  This procedure identified 9,473 households and 11,965 individuals in the 

target area range.  AHEAD obtains detailed information on a number of domains, 

including demographics, health status, health care use, housing structure, disability, 

retirement plans, and health and life insurance.  Survival information throughout the six 
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waves has been obtained by a link to the data of National Death Index (NDI).  The 

present study uses data of all six waves (1993, 1995, 1998, 2000, 2002 and 2004) for 

analyzing transitions in the number of functional limitations in older Americans. 

We measure functional status by a score of activities of daily living (ADL), 

instrumental activities of daily living (IADL), and other types of functional limitations 

(Liu, Engel, Kang, & Cowan 2005).  A score of one is given to an individual who has any 

difficulty with a specific physical or social activity, and the number of items for which 

difficulties are reported is then summed.  As a result, the score ranges from 0 (functional 

independence) to 15 (maximum disability).  Covariates include time (0 to 5), veterans 

status (1 = veteran, 0 = not veteran), age, gender (female = 1), education (years in 

school), ethnicity (1 = white, 0 = others), marital status (1 = currently married, 0 = other), 

smoking cigarettes and drinking alcohol, the number of serious health conditions, and 

self-rated health (5 scales: 1 = poor, 5 = excellent).  Because the interval between two 

adjacent time points is not equally spaced in the AHEAD longitudinal dataset, we use 

REPEATED/TYPE = SP in executing the SAS PROC.MIXED procedure to represent the 

autoregressive error structure of the data (Littell et al., 2006). 

Table 1 shows four sets of number of functional limitations in older Americans at 

six time points, 1993, 1995, 1998, 2000, 2002 and 2004, derived from, respectively, 

observed values and the three types of mixed models.  The conventional linear mixed 

model systematically overestimates the number of functional limitations at every 

subsequent time point and this overestimation increases with time, compared to the 

observed values.  The parametric two-step mixed model somewhat reduces such 

overestimation, but the biases still appear considerable and systematic.  Lastly, the 
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nonparametric approach derives the most accurate estimates to describe transitions in the 

number of functional limitations in older Americans. 

<Table 1 about here> 

Figure 1 further demonstrates differences in the predicted number of functional 

limitations among results derived from the three mixed models.  In Panel A, there are 

distinct and systematic separations between the two growth curves.  At each time point, 

the predicted number of functional limitations derived from the conventional mixed 

model is considerably higher than the corresponding observed value.  The predicted 

growth curve in Panel B, derived from the parametric approach, displays narrowed 

separations from the observed line; however, the biases remain sizable.  In Panel C, 

separations of the two curves almost disappear, thereby demonstrating the validity and 

reliability of the nonparametric approach. 

<Figure 1 about here> 

 

Discussion 

Our analysis demonstrates that direct application of one-step linear mixed models 

on longitudinal data can be associated with serious prediction biases when the impact of 

selection bias is strong.  We introduce two refined approaches to overcome such biases 

when applying the mixed model to analyze large-scale longitudinal data of an older 

person’s number of functional limitations.  The parametric adjusting approach is an 

extension of Heckman’s traditional two-step model, based on several assumptions about 

the parametric distribution of selection errors.  We show that the parametric approach on 

the mixed model reduces some of the biases incurred by the misspecification of 
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disturbances in a one-step mixed model; however, the correction is limited and the biases 

are still substantial, evidenced by the clear separation between the growth curve 

generated from this method and the curve from the observed data (see Table 1). 

Our nonparametric adjusting method offers a new way to manage selection biases 

in applying the mixed model to analyze large-scale survey data with high attrition.  This 

approach takes into account the selection biases with appropriate empirical adjustment, 

minimizing such biases considerably.  The convergence of the two growth curves perhaps 

provides the strongest evidence that because health transitions among older persons are 

highly selective, the assumption of normality in both mortality and health status is not 

appropriate in analyzing longitudinal data with high attrition rates. 
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