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Abstract 

This research determines if the declines in infant mortality with increased 

maternal education are due to “indirect” effects that operate through improved birth 

weight or to birth weight independent “direct” effects. The data used are the US 

national linked birth death files, African, Mexican and European American cohorts, 

2001. Education is dichotomized as completing 12th grade or less. The analysis is 

conducted using Covariate Density Defined mixture of logistic regressions, which 

considers “normal” and “compromised” births separately. Among “normal” births, 

mean birth weight increases significantly with education by 27-108 grams. Mortality 

declines due to “direct” effects of education (log-odds -0.04 to -0.91).  The “indirect” 

effects generally increase infant mortality (log-odds -0.17 to 0.45) despite improvements 

in birth weight. No consistent birth weight or mortality effects occur among 

“compromised” births. These results are consistent with the view that birth weight is 

not on the causal pathway to mortality. 

 

  



Introduction 

 

Measures of socioeconomic status, such as education are thought to be important 

correlates of body size, e.g. stature and mortality (Floud, Wachter and Gregory 1990). 

What is not clear is whether the effects of socioeconomic status influence mortality 

“directly” or “indirectly” through its influence on the anthropometric measures. A well-

know example is the relationship of socioeconomic level with birth weight and infant 

mortality. The correlation between birth weight and infant mortality is empirically so 

well established that the current US policy to reduce infant mortality is to improve birth 

weight (Buehler et al. 1987; Institute-of-Medicine 1985; Mc Cormick 1985; US-DOHHS 

2000). However, many theoreticians have argued that birth weight is not on the causal 

pathway to infant mortality (Mosely and Chen 1984; Wilcox and Russell 1990; Wise 

2003) at least among “normal” births.  

Recently a statistical method of determining if birth weight is or is not on the 

“causal” pathway to infant mortality has been developed (Gage et al. 2004), based on 

the Wilcox (Wilcox and Russell 1990) definition of “causality”. Wilcox argues that 

among “normal” births when the birth weight distribution shifts due to a stressor (e.g. 

smoking during pregnancy; fetal development at altitude) that the birth weight specific 

mortality curve shifts in the same direction a similar amount so that there is no net 

change in infant mortality due to the shift in the birth weight distribution (Figure 1a). 

Consequently, birth weight is not on the “causal” pathway to infant mortality. In 

addition, he argues that there may be a consistent increase (or decline) in infant 



mortality at all birth weights (independent of birth weight) due to a stressor (e.g. 

smoking during pregnancy; but not fetal development at altitude) (Figure 1b). Based on 

this definition it only need be shown that the shift in the birth weight distribution 

among “normal births” is not matched by a similar shift in the birth weight specific 

infant mortality curve to demonstrate that birth weight is on the “causal” pathway to 

infant mortality (Figure 1c). This will be referred to here as an “indirect” effect through 

birth weight of the stressor on infant mortality. The birth weight independent effect will 

be called a “direct” effect of the stressor. Wilcox does not discuss whether 

“compromised” births behave in the same manner as “normal” births. Nevertheless to 

fully examine Wilcox’s hypothesis requires a method that distinguishes between 

“normal” and “compromised” births. Covariate Density Defined mixture of logistic 

regressions (CDDmlr) distinguishes between “normal” and “compromised” births and 

can estimate the significance of “indirect” as well as “direct” effects.  

Figure 1 about here 

The aim of this research is to determine if education, a measure of socioeconomic 

level, affects infant mortality “directly”, or “indirectly” though birth weight, or both. 

The analyses are conducted on three populations by sex, African, European, and 

Mexican Americans from the 2001 US birth cohort. 

 

Data and Methods 

The data for these analyses was obtained from the national linked birth death 

files for the birth cohort born in 2001. Births with missing values, that is missing birth 



weights, maternal education, or race/ethnic designations, are excluded. Race and ethnic 

origin is based on mother’s reported race and ethnic origin. Summary statistics for the 

six 2001 birth cohorts are presented in Table 1. Confidence intervals are estimated using 

bootstrap procedures. Two hundred bootstrap samples of approximately 200,000 births 

are selected for each population by sex from the complete 2001 birth cohort to estimate 

standard errors of the estimates. In each case the proportion of births from the full 

cohort necessary to achieve a slightly larger than 200,000 sample is estimated and then 

each birth is randomly included (or excluded) based on a random uniform number 

between 0.0 and 1.0. Samples of 200,000 are used instead of the conventional procedure 

of sampling with replacement samples the size of the original cohort due to the large 

computational costs of repeatedly fitting such large cohorts. 

Table 1 about here 

The analysis is conducted using Covariate Density Defined mixture of logistic 

regressions (Gage et al. 2004). Conceptually, this method fits a multi-component 

Gaussian mixture model to the birth weight distribution, which divides the population 

into several (2 in this case) latent subpopulations, and simultaneously fits a separate 

logistic regression to each latent subpopulation. This procedure is useful when the 

Gaussian mixture model accounts for unobserved heterogeneity. In the case presented 

here, birth weight is the covariate to which a two-component Gaussian mixture model 

is fitted. The subpopulation accounting for the majority of individuals is labeled the 

primary subpopulation (Figure 2a) and is considered to represent births undergoing 

“normal” fetal development (Gage et al. 2004). The remaining subpopulation accounts 



for most low birth weight and macrosomic births (Figure 2a) and is consequently 

interpreted as accounting for births undergoing “compromised” fetal development 

(Gage et al. 2004). The logistic regressions on infant mortality for each subpopulation 

are generally parameterized as second-degree polynomials of birth weight to account 

for the reverse J-shaped relationship of birth weight and infant mortality (Figure 2b). 

Applications indicate that the two components identified by the Gaussian mixture 

model are heterogeneous with respect to infant mortality (Gage et al. 2004). The 

“compromised” population consistently displays lower birth weight specific mortality 

(Figure 2b), but higher overall mortality due to the less favorable distribution of birth 

weight among “compromised” births (Gage et al. 2004). 

Figure 2 about here 

Here we expand this basic model by adding exogenous covariates to the 

Gaussian mixture model and to the logistic regressions. In the case presented here the 

covariate is education: high school education or less (coded 0) versus higher education 

(coded 1). In the Gaussian mixture model, all parameters, i.e. the mixing proportion, 

means and variances, are each defined as a function of education. In addition, education 

is added to the logistic regression models, as a covariate on the constant, linear and 

squared terms of a second-degree polynomial of birth weight. Finally we define birth 

weight within each logistic regression as the Z-score based upon the corresponding 

Gaussian subpopulation that it represents. The result is a model that can test Wilcox 

(Wilcox and Russell 1990) definition of “direct” and “indirect” effects (Figure 1). After 

standard transformation of the quadratic covariates to account for correlation inherent 



in this specification, the education interaction covariate on the constant of the birth 

weight polynomial can be interpreted as a direct effect (constant at all birth weights). 

The education interaction covariate on the linear birth weight term accounts for the 

shift, left or right, in the birth weight specific mortality curve with respect to mean birth 

weight. Due to the use of Z-scores of birth weight, an insignificant interaction on the 

linear birth weight interaction term indicates that the birth weight specific mortality 

curve shifts in concert with birth weight density, i.e. no indirect effect of education as 

argued by Wilcox. The education interaction on the squared term accounts for changes 

in shape of the birth weight specific infant mortality curve relative to the birth weight 

distribution. This is also an indirect effect but is not considered in Wilcox’s original 

theory.  However, it is related to Basso et al’s (Basso, Wilcox and Weinberg 2006) 

extension of Wilcox’s theory, which attributes this effect to confounding rather than 

causality. Again an insignificant interaction term indicates no indirect (or confounding) 

effect, due to the use of Z-scored birth weight.  CDD mixture of logistic regression can 

be used to explore Basso’s confounding hypothesis.  Here, however, we examine shift 

and shape affects together, as potential “causal” effects.  A formal definition of this 

model is presented below. 

The probability of death ( y ) is a product of a) the distribution of the birth weight 

( x ) given the exogenous dichotomous covariate ( z ), and b) the conditional mortality 

given x and z : 
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In the case of two Gaussian subpopulations (labeled as p  and s ), the )z;|x (f1 θ  is 
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where sπ  is the proportion of births belonging to the subpopulation s . For pi = and s , 

500N  represents the Gaussian density, truncated at 500 grams, with mean iµ  and 

variance iσ . The probability of death conditioned on x  and z  is given by: 
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where *
ix  is the standardized x  using iµ  and iσ , iP  is the probability of death for an 

infant with birth weight ( x  or *
ix ) and covariate z  in the subpopulation i  given by a 

quadratic logistic form:  
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q  is the conditional probability of that infant belonging to the subpopulation s . The 

mixture submodel )z;|x (f1 θ  (Eq. 2) determines that 
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The function ),;z,x,y(f θβ  (Eq. 1) was fit to individual data by the method of 

maximum likelihood. Overall, there are 22 parameters for the model with a 

dichotomous covariate z  and only 11 for the model without z . Bias-adjusted 95% CIs 

for the parameter, and in some cases combinations of parameters, are estimated using 

two bootstraps of 100 repetitions each. Due to the relatively small number of repetitions 

in the bootstraps and potential for instability in marginally significant and marginally 

insignificant results borderline results are acknowledged in the text. 

Table 2 about here 

 

Results 

Education influences the birth weight distribution thorough changes in the mean 

and standard deviation of both primary and secondary birth weight (Figure 3, Table 3). 

The mean of the primary subpopulation increases significantly with education in all 

birth cohorts examined. The increase is largest in European Americans and smallest in 

Mexican Americans. The standard deviation of the primary subpopulation changes 

significantly in all birth cohorts. This declines in all cohorts examined except African 

American males. The mean of the secondary subpopulation declines in African 



American birth cohorts about 100 grams, while it increases in the European American 

birth cohorts by more than 200 grams. The secondary mean does not change 

significantly among the Mexican American birth cohorts. Finally, the standard 

deviation of the secondary subpopulations changes significantly in all populations 

except Mexican American females. Among European Americans and Mexican 

Americans it declines. However, among African American birth cohorts it increases 

with education. Finally, education is associated with an increase the proportion of 

primary births, although this is typically less than 1%. Nevertheless the increase is 

significant in three out of the six populations examined (i.e. African American males 

and females, and European American females). Note a) that the response of African 

American birth weight distributions to education differs qualitatively particularly in the 

secondary subpopulation and mixing proportion from the responses of European 

American birth cohorts and b) that the response of the Mexican American birth weight 

distributions to education is smaller than the responses of the other ethnic birth cohorts.  

Figure 3 about here 

Table 3 about here 

The logistic regression results indicate that mortality declines due to higher 

education in both primary and secondary subpopulations. However, most of the effect 

is due to primary births. The results are shown as log odds ratio in Table 4. In 

particular, in 5 of the 6 populations examined, total primary mortality declines 

significantly with education. The effect is smallest among the primary Mexican 

American birth cohorts in general. On the other hand, the decline in total secondary 



mortality with higher education is only significant in 2 of the 6 subpopulations, 

Mexican American females and European American males. To assess the relative 

contribution of primary and secondary births to the total decline in infant mortality due 

to education, the log odds ratios in Table 4 must take into account that the primary 

subpopulation includes >90% of all births (relative contribution Table 4).  Comparison 

of these adjusted estimates indicates that the effect of higher education occurs large in 

the primary subpopulation even among Mexican American births where the effects of 

education are smallest. 

Table 4 about here 

In the primary subpopulation, the main influence of education on infant 

mortality is due to direct effects. The direct effects of education are all negative, that is 

higher education tends to reduce mortality (Table 4). These are significant in all birth 

cohorts examined except European American and Mexican American males. The 

indirect effects (i.e. the combined effects of shift and shape) are predominately positive 

(i.e. to increase mortality), but are only significant in three cases, Mexican American 

males and females, and African American females. Note that the result for African 

American males is marginally insignificant. In two cases Mexican American males and 

European American males, the effects of education tend to reduce mortality. The 

decline in Mexican American males is significant, but only marginally, while the decline 

in European American males is not significant. In most populations, the birth weight 

specific indirect effects of education are concave, that is mortality increases at lower and 

higher birth weights (Figure 4a). The direct effect is of course independent of birth 



weight as indicated by a flat line in Figure 4a and 4b. Among Mexican American 

cohorts, however, the birth weight specific indirect effects of education are convex, that 

is the indirect effect on mortality is highest at normal birth weights and lower at low 

and high birth weights (Figure 4b). The difference between Mexican American males 

and females is that the curve is slightly higher among females so that the indirect effects 

exceed a log-odds of 0.0 in the normal birth weight range, where as the male curve does 

not. All of the primary indirect effects appear to be due to changes in the shape of the 

mortality curve relative to the density of birth weight as opposed to a horizontal shift in 

the mortality curve relative to the density of birth weight which should produce a 

monotonically increasing or decreasing log odds ratio with respect to birth weight. 

Figure 4 about here 

Decomposition of secondary births is similar in that the direct effects of higher 

education reduce mortality, while the indirect effects of secondary mortality tend to 

increase mortality, but the results are not generally significant. The direct effects are 

only significant in three populations, while the indirect effects are only significant in 

two populations (Table 4). Again, the direct effects tend to be larger than the indirect 

effects. The birth weight specific trends in indirect effects are not consistent across 

populations.  

Finally, the impact of education on the mixing proportion (a cohort 

“composition” effect) also influences total mortality, but only slightly. The proportion of 

primary births increases with education significantly in African American males and 

females and European American females. Since the primary subpopulation has lower 



overall mortality, this effect explains some of the decline in total mortality due to 

education. All together this phenomenon accounts for about 10.6% of the total decline in 

infant mortality due to higher education. The effects are greatest in African American 

males where it accounts 27.4% of the decline. Overall however, these effects are small.  

 

Discussion and Conclusions 

A theoretical limitation of the analysis presented above is that Wilcox’s original 

theory does not completely account for all of the potential influence of birth weight on 

infant mortality. In particular, Wilcox’s original theory assumes that the reverse J-

shaped birth weight specific mortality curve is constant. It is possible that birth weight 

is causally responsible for the reverse J-shape. Recently, Basso (Basso et al. 2006) has 

provided an extension of the original theory that attributes the reverse J-shape to 

confounding. CDD mixtures of logistic regression can be used to explore this possibility 

as well. However, in the present analysis we test Wilcox’s original theory, although the 

model used allows the shape of the reverse J-shape to change in response to the 

covariate education. We have interpreted this change in shape as a kind of indirect 

effect since it involves birth weight and as such included it as potentially due to a 

“causal” effect of birth weight along with shift effects (causality) in Wilcox’s original 

theory. It should be noted that the important “indirect” effects that we identified above 

appear to be due to shape changes and not shift changes.  

A methodological limitation of the analyses presented above is limiting the 

bootstraps to 200,000 as opposed to resampling at the level of the national populations. 



Smaller bootstrap sample sizes were chosen simply to reduce the computational time 

required to complete the analysis. The number of bootstrap replicates was further 

restricted to 200 (100 to estimate the bias, and 100 to estimate the confidence regions) for 

the same reason. Increasing the bootstrap sample size would increase power allowing 

us to conclude that smaller effects are consistent, while increasing the number of 

replicates might make the inconsistencies in significance among the populations more 

consistent, particularly those where significance or insignificance is marginal. 

Consequently, marginal results are noted above. On the other hand, the procedure calls 

attention to those effects that are most important and downplays those with small effect 

sizes. In any event samples of 200,000 are already quite large.  

The analyses presented above suggest that education has little effect on Mexican 

American birth cohorts compared to other birth cohorts. The effect of higher education 

on the birth weight distribution tends to be small and is more often insignificant. The 

impact of education on primary mortality is smaller than in other cohorts as well. 

Furthermore, the trends in primary indirect effects with birth weight are qualitatively 

different from other populations (Figure 4). It is not clear why Mexican American 

infants do not respond to the level of maternal education like other birth cohorts. 

However, Mexican American birth cohorts have the lowest observed infant mortality 

rate of any of the populations examined (Table 1). In addition, approximately 64% of 

Mexican American births are to Mexican-born mothers. Perhaps the differences in 

response to education noted above are a part of the “nativity complex” that is thought 

to influence infant mortality in recent migrant populations (Hummer et al. 1999). 



The most important influences of higher education in infant mortality appear to 

be due to direct effects, that is effects that are independent of birth weight, among 

“normal” (primary) births. In all cases these effects tend to reduce mortality with 

increased educational level. The indirect effects of higher education are relatively small, 

less significant and tend to increase infant mortality with higher education. This is 

surprising since birth weight increases significantly, and the variance in birth weight 

declines with higher education in most primary subpopulations examined which 

reduces the number of low birth weight infants and is therefore expected to reduce 

mortality. We attribute this negative indirect effect of higher education to relaxed fetal 

selection on unobserved heterogeneity with higher levels of education, due perhaps to 

increased medical care during pregnancy.  

On the other hand, “compromised” (secondary) births contribute substantially 

less to the decline in infant mortality with higher education. Here there are also 

significant effects on the mean and variance of birth weight, but in different directions 

in different populations. Secondary birth weight densities deteriorate with higher 

education, that is mean birth weight declines and variance in birth weight increases 

among secondary African American births, while the opposite occurs in European 

American births. The direct effects still tend to reduce mortality, and the indirect effects 

still tend to increase mortality but the effects are smaller, and less often significant. In 

this case the African American deterioration in birth weight is consistent with the 

increase in indirect mortality with higher education among “compromised” births. 



Finally, higher education tends to reduce the proportion of “compromised” 

births, with a resulting decline in overall infant mortality at least in European and 

African American birth cohorts. However, these effects are only a small fraction of the 

total education effect.  

The results presented here generally support Wilcox’s (Wilcox and Russell 1990) 

original theory that birth weight is not on the causal pathway to infant mortality. A 

sufficient number of significant indirect effects among “normal” births that influence 

infant mortality through birth weight were found, which might falsify Wilcox’s original 

hypothesis. In particular the significant cases are not attributable to a horizontal shift in 

the birth weight specific mortality curve relative to birth weight. They are more 

consistent with a change in the shape of the birth weight specific mortality curve 

relative to the birth weight density. The lack of horizontal shift is in agreement with 

Wilcox’s (Wilcox and Russell 1990) original theory that birth weight is not on the causal 

pathway. The changes in the reverse-J-shape could be due to “causal” effects of birth 

weight not included in Wilcox’s original theory or to confounding as per Basso et al’s. 

(Basso et al. 2006) extension of Wilcox’s original theory. Basso’s extension could be 

explored further using CDD mixtures of logistic regressions. It is interesting to point 

out, however, that if these indirect effects are causal, then the causal effect is opposite 

what is generally proposed and opposite the assumption upon which our current 

national policy is based. The indirect effect of education through improved birth weight 

(higher birth weight, lower variance in birth weight) on infant mortality tends to 

increase infant mortality, not decrease infant mortality, net of the direct effects of 



education. Additional analyses will be necessary to determine if these trends are 

consistent, are really “causal” or are due to confounding. In any event the results 

suggest that our National policy of improving birth weight in an attempt to improve 

infant mortality may not be effective.  
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Figure Captions 

Figure 1. Graphical representation of Wilcox’s definition of “causality”. Panel (a) 

represents a shift in birth weight that is accompanied with a shift in the birth weight 

specific mortality curve so that no change in mortality occurs (birth weight is not 

“causal”). Panel (b) represents a birth weight independent change in infant mortality, 

(direct effect, birth weight is not “causal”). Pane (c) represents a shift in birth weight 

that is not accompanied by an identical shift in the birth weight specific mortality curve 

so that mortality does change. 

Figure 2. Graphical representation of the Covariate Density Defined mixture of 

logistic regressions as applied to birth weight. The results presented are African 

American males 2001 based on analyses developed below in this paper. Panel (a) 

represents the density of total birth weight as the sum of two Gaussian densities, 

primary and secondary. The secondary is considered “compromised” since it accounts 

for the majority of low birth weight and macrosomic infants. Panel (b) represents 

characteristic total, as well as, primary and secondary specific mortality curves.  

Figure 3. Shift in birth weight density due to higher education: African American 

males 2001. African American females, and European American males and females are 

similar. The shift for Mexican Americans is much smaller. 

Figure 4. Log odds ratios for direct, indirect, and total effects of higher education 

on infant mortality. Positive effects indicate increased mortality, while positive effects 

represent reduced mortality due to higher education. Panel (a) presents African 

American females. These trends are characteristic of all African and European American 



populations examined. Panel (b) presents Mexican American females. Mexican 

American males are similar. 
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Table 1 Descriptive statistics for the sample populations 
 

NA of bwt * NA of education & NA of bwt and 
education*,& Birth Cohort # Total 

Births 
# of births % of births # of births % of births # of births % of births

# Births 
Used CDR  

Non-His. Eur. Am. F. 1,093,096 69,513 6.36 8,507 0.78 77,173 7.06 1,015,923 3.42 
Non-His. Eur. Am. M. 1,150,195 73,381 6.38 9,163 0.80 81,619 7.10 1,068,576 4.46 
Non-His. Af.. Am. F. 280,263 24,505 8.74 4,628 1.65 28,579 10.20 251,684 7.12 
Non-His. Af. Am. M. 289,326 25,196 8.71 4,892 1.69 29,474 10.19 259,852 9.38 
Mex. Am. F. 296,109 24,681 8.34 5,956 2.01 29,873 10.09 266,236 3.47 
Mex. Am. M. 307,424 25,736 8.37 6,215 2.02 31,160 10.14 276,264 4.26 

high school and below (z=0) college and above  (z=1)  
Birth Cohort 

# of Births # of Deaths CDR mean (g) # of Births # of Deaths CDR mean(g)  

Non-His. Eur. Am. F. 432034 2044 4.73 3278 583889 1429 2.45 3390  
Non-His. Eur. Am. M. 454249 2889 6.36 3393 614327 1876 3.05 3512  
Non-His. Af.. Am. F. 162394 1254 7.72 3061 89290 539 6.04 3150  
Non-His. Af. Am. M. 167571 1712 10.22 3165 92281 725 7.86 3266  
Mex. Am. F. 222480 795 3.57 3299 43746 130 2.97 3322  
Mex. Am. M. 230989 1028 4.45 3393 45275 150 3.31 3424  

Non-His. = non- Hispanic Eur. = European  Af. = African Mex. = Mexican 
Am. = American  F. = females  M. = males   
bwt = birth weight (gram)  
*: missing birth weight, birth weight < 500 grams, missing LMP gestational age, LMP gestational age < 20 weeks 
&: missing education information 



CDR = Crude death rate (deaths per 1000 births)  
 



Table 2 Definitions of the CDDmlr model with an indicator variable as the covariate 
 
Symbol Definition 

Mixture Submodel parameters for the i subpopulation (i = s and p)  
   --- functions of dichotomous covariate z 
πs(z) Mixing proportion (% secondary subpopulation) 

α0 Constant for z=0 
α1 Additive effect on the constant when z=1 

µi(z) Mean birth weight   
γi,0 Constant for z=0 
γi,1 Additive effect on the constant when z=1 

σi(z) Standard deviation of birth weight 
λi,0 Constant for z=0 
λi,1 Additive effect on the constant when z=1 

Mortality submodel parameters for the i subpopulation (i = s and p) 
   --- coefficients of a second degree polynomial   
a*i0 Constant for z=0 
b*i0 Linear term for standardized birth weight (x*i) for z=0 
c*i0 Square term for  standardized birth weight (x*i) for z=0 
a*i1 Additive effect on the constant when z=1 
b*i1 Additive effect on the linear term when z=1 
c*i1 Additive effect on the square term when z=1 
 



Table 3 Changes in parameter estimates for the mixture submodel due to higher education 
 
Birth Cohort  )(itlog sπ  sπ (%) sµ (g) sσ (g) pµ (g) pσ (g) 

European American Females -0.07 0.4 253 -51 103 -20 
European American Males -0.12 * 0.8 * 227 -66 108 -19 
African American Females -0.09 0.8 -65 * 114 88 -9 
African American Males -0.19 1.6 -136 152 95 9 
Mexican American Females -0.05 * 0.3 * -36 * -24 * 27 -3 
Mexican American Males 0.03 * -0.2 * 4 * -29 * 35 -4 

* not significant based on bias-adjusted 95% confidence intervals 



Table 4 Decomposition of direct and indirect effects (expressed as log odds ratio) due to higher education 
 

  Primary Secondary  Relative Contributions 
Birth Cohort 

 Total   Indirect   Direct   Total   Indirect   Direct    Primary Secondary
European American Females  -0.85 * 0.06  -0.91 * -0.19  -0.42  0.23  -0.80 -0.01 
European American Males  -0.87 * -0.06  -0.81  -1.30 * 0.16  -1.46 * -0.80 -0.09 
African American Females  -0.66 * 0.12 * -0.78 * -0.43  0.20  -0.63  -0.59 -0.04 
African American Males  -0.52 * 0.02  -0.54 * -0.47  1.48 * -1.95 * -0.47 -0.05 
Mexican American Females  -0.14  0.45 * -0.59 * -0.98 * 0.53  -1.51 * -0.13 -0.07 
Mexican American Males  -0.21 * -0.17 * -0.04  -0.14  0.49 * -0.62  -0.19 -0.01 
*: significantly different from 0.0 based on bias-adjusted 95% confidence intervals 

“Relative Contributions” are the total primary and secondary effects multiplied by the proportion of primary and secondary births, that 
is the relative size of the primary effect compared to the secondary effect with respect to the total change in mortality due to 
education. 

 


