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Abstract

This paper draws out some implications of son targeting fertility behaviour for
gender inequality in developing economies. It is demonstrated that such behaviour
has two notable implications at the aggregate level: (a)larger number of siblings for
girls (Sibling Effect), and (b)a higher within-family birth order for boys (Birth Order
Effect). While the first tends to worsen gender inequality through monetary factors,
the second does so in terms of non-monetary factors. Empirically testing for these
effects, we find that both are present in many countries in South Asia, South-East
Asia and North Africa but are absent in the countries of Sub-Saharan Africa. Using
maximum likelihood estimation, we proceed to study the effect of covariates on son
targeting and fertility behaviour for India, a country which displays significant sibling
and birth-order effects.

JEL Codes: J1, J7.
Keywords: son preference, stopping rules, gender inequality.

1 Introduction

Gender inequality is a pervasive phenomenon in many developing countries. Even a cursory
glance at the indicators of well-being like literacy, infant mortality, life expectancy, primary,
secondary or college enrollment rates, differentiated along gender lines, makes this amply
clear. This has not only been well documented (see, for instance, the various issues of the
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World Development Indicators, published by the World Bank) but also widely commented
on [Bardhan, 1974, 1982; Sen and Sengupta, 1983; Sen, 1990; Filmer et al., 1998; Clark,
2000; Jensen, 2002].

To explain gender inequality, many scholars have surmised that the intra-household al-
location of resources might be skewed in favour of male children [Bardhan, 1974, 1982; Sen
and Sengupta, 1983; Clark, 2000]. Many studies have even attempted to derive the gen-
der differentiated expenditure on children’s development using inter-temporal optimization
models of family expenditure. If this expenditure differential against female children were
indeed true, it would go a long way in explaining the continuing disadvantaged position of
women in these societies.

Econometric studies to test the hypothesis of biases in intra-household allocation of re-
sources against the girl child have, however, largely produced negative results. Numerous
papers following the method pioneered in Deaton (1989) and using data from a wide cross-
section of developing countries have almost all come up with the finding that intra-household
biases are statistically insignificant (see Jensen, 2002 for a list of references to this econo-
metric literature). Nevertheless, two recent studies have cast doubt on these findings by
reporting the presence of systematic resource biases against girls within families (Burgess
and Zhuang, 2000; Clark, 2000).

Our concern in this paper will not be an engagement with these conflicting findings on
the presence/absence of intra-household biases against the girl child. Instead, we propose
to develop and test an alternative framework to explain gender inequality in developing
countries. The simple model that we develop in this paper shows that even in the absence
of intentional biases against female children at the household level, a disadvantaged position
for them can be generated at the aggregate level by fairly plausible assumptions regarding
fertility behaviour of families.

To develop this alternative framework, we use a well-recognized aspect of developing
countries (in particular, the countries of East, South and South-East Asia and North Africa)
namely, son preference. By this we mean, following anthropologists and sociologists (Arnold
et al., 1998; Clark, 2000; Jensen, 2002), the existence in society of a strong preference for
male as opposed to female offspring. Furthermore, this strong preference is reflected in
son targeting fertility behaviour, also referred to in the literature as differential stopping
behaviour (DSB) or male-preferring stopping rules [for instance see, Clark, 2000]. The main
idea behind such stopping rules is that the sex composition of already-existing children
determines the subsequent fertility behaviour of families.1In our model, we concretize this
idea as follows: couples continue childbearing until they reach their “desired” number, k, of
sons or when they hit the ceiling for the maximum number,N , of children that they think
to be feasible (given their resource constraints).

We show that there are two important implications of such fertility behaviour for gender
inequality. First, girls will be born into relatively larger families sharing resources with a
larger sibling cohort; we call this the “sibling effect”. Second, boys will be born as relatively
younger children within families; we call this the “birth order effect”. Both have important

1For evidence on this see (Arnold, et al., 1998 and Larsen, et al., 1998).
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implications for gender inequality even in the absence of intra-household allocation biases,
as we discuss in detail later.

Yamaguchi (1989)2 works in terms of the following stopping rule: couples continue child-
bearing until they get their “desired” number,k, of sons. Thus, in contrast to the stopping
rule we use, there is no limit on the maximum number of children that couples can have
in their attempt to attain the target for boys. It can be easily seen that our framework is
more general; Yamaguchi (1989) is a special case of our model if we let N go to infinity.
It should be noted that the analysis becomes substantially simplified in this case (when N
can increase without bounds) because the number of children in a family follows a standard
probability distribution (the negative binomial distribution); when N is a finite integer, we
no longer have any standard distribution. Additionally, our framework is more realistic; it
seems unreasonable to assume that couples have no limit on the number of children they can
produce. In the sample for India, for instance, about 94 percent of the households have five
or less children.

Jensen (2002) arrives at results similar to what we have called the sibling effect, though
he uses a different stopping rule. In his model, couples want n children and b boys; but if
they reach n children with less than b boys, they continue childbearing until they attain b
boys or reach some maximum number of children, n + k. This stopping rule is a variant of
that used by Seidl (1995); this is also a special case of our model with the desired number of
sons k = b and the maximum number of children N = n + k. However, there are two major
differences between our work and Jensen’s (2002). First, while we discuss both the sibling
effect and the birth order effect, Jensen (2002) limits himself only to the former. Second,
unlike Jensen (2002) we use household level data on birth sequences and desired family size
to estimate the full model with MLE.

To focus attention on the issue of birth order and to put this paper in perspective,
we would like to differentiate between mean absolute and mean relative birth order. The
mean absolute birth order of boys (girls) is computed by averaging the position of the male
(female) child within the sequence of births in his (her) family, where averaging is done over
all children in the population. On the other hand, to compute mean relative birth order
of boys (girls) in the population, we first calculate the average position of male (female)
children within each family and then average over all families.

The difference between absolute and relative birth orders is important because the latter
affects gender inequality in a sense that the former does not. To understand this crucial
point consider two children born into different families which are identical in all respects
(income, education of parents, etc.). Suppose the first child under consideration is a first-
born in a family with only one child; and the second child is a first-born in a family with four
children. Are the prospects for development of both children the same? We think not. The
difference is especially important in the context of poorer families in developing countries
where a substantial burden of child-rearing falls on the shoulders of elder children. In the
second scenario considered above, the position of the first-born will be much less favourable

2Similar ideas can also be found on pp. 342 in Ray (1998); his suggestions to solve the problems, in terms
of the male preferring stopping rule, is very similar to Yamaguchi (1989).

3



for self-development because (s)he will have to share in the responsibilities of caring for the
younger children in the family. In the first scenario, the first-born will not be burdened with
these responsibilities and will therefore be able to devote much more time and energy for
her/his own development. It is this difference that will be captured by the mean relative
birth order but not by the mean absolute birth order.

An example might further clarify the difference. Consider the following scenario from
Jensen (2002): couples want one child but will have a second one if the first is not a boy. In
this case, half the families will end up with a boy, one-fourth with a girl and a boy (in that
order) and another fourth with two girls. Now, if we compute the mean absolute birth order
of boys and girls, we see that it is the same for both at 4/3. Two-thirds of both boys and
girls are first-born children while one-third are second-born, and so the mean absolute birth
order is 4/3 (= 1x2/3+2x1/3) for both boys and girls.

Let us now compute the mean relative birth orders. To proceed, we will define an average
within-family birth order (AWFBO) score for boys and girls respectively in each family and
then average across all families. Notice that boys have a AWFBO score of 1 in those families
which have only one child (half of the families) and a AWFBO score of 2 in those families
which have a girl as the first and a boy as the second child (one-fourth of the families).
Girls, on the other hand, have a AWFBO score of 1 for families which have a girl as the
first child and a boy as the second child (one-fourth of the families); and a AWFBO score of
3/2=(1+2)/2 for families with two girls. Hence the mean relative birth order for boys is 4/3
(= 1x2/3+2 x1/3) because we average across families; in a similar way, the mean relative
birth order for girls is 5/4 (= 1x1/2+3/2x1/2). Not only are they different, boys have a
higher relative birth order than boys.

Note that when Yamaguchi (1989) refers to his result on birth order he means the relative
birth order; he concludes his analysis by stating that “male-preferring stopping rules do not
have a differential effect on the mean birth order of boys and girls” (Yamaguchi, 1989,
pp.459). This result, which is at variance with ours, is really an artifact of the assumption
that N can increase without bounds in his model. If we limit N to a finite integer, as we have
done in our model, the result no longer holds; the mean relative birth order for boys turns
out to be greater than for girls, as the above example shows and as we demonstrate later3.
On the other hand, when Jensen (2002) refers to the birth order he means the absolute birth
order; his conclusion that “fertility-related characteristics such as birth order...do not differ
between boys and girls...” (Jensen, 2002, pp.6) is a statement about mean absolute birth
orders. Thus, even though both Yamaguchi (1989) and Jensen (2002) seem to have arrived
at the same result, they are really referring to different measures of birth order.

To summarize, the contribution of this paper is two fold: one, the male-preferring stop-
ping rule that we analyze in this paper is both more realistic and general than that found in
Yamaguchi (1989); and two, we highlight not only the sibling effect but also the birth order
effect4, an issue that seems to have been neglected so far in the literature (for eg. Jensen,

3See Theorem 2 below.
4Whenever we mention birth order without any qualification in this paper, we will mean the relative birth

order.
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2002). Additionally, we confront our model with data from a wide range of countries in
Asia and Africa in a novel manner, using both descriptive statistics and maximum likelihood
estimation. To the best of our knowledge, such empirical analysis does not currently exist
in the economics, sociology or demography literature.

Our empirical results show that both the sibling and the birth order effects are present in
a host of countries in East Asia, South Asia, South-East Asia and North Africa; these effects
are absent in countries of Sub-Saharan Africa. When we compute these same effects for the
India states, we find their strong presence in the states of North, West and Central India;
the effects are absent in Kerala, and several states in North-Eastern India. This is more or
less in line with anecdotal evidence on patriarchal tendencies in the different geographical
regions of India. Our maximum likelihood estimation for India reveals that formal education
of women has a large and significant impact on both desired fertility and son-targeting:
education reduces both family size and the probability of targeting behaviour.

Before moving onto the main text of the paper, we would like to briefly comment on a
possible source of criticism of our approach. It might be objected that this paper does not
have any family-level optimization model to undergird the analysis. We have deliberately
avoided an optimization-based analysis, along the lines of Becker (1960) or Becker and Lewis
(1973) because our intention is merely to highlight the effects of son targeting behaviour,
not to derive it from first principles. Additionally, our results about the sibling effect and
birth order effects will be in operation whenever families implement male-preferring stopping
rules on their fertility behaviour, no matter what the ‘optimal’ family size or son-target is.
Hence, it seemed unimportant to derive the exact numerical values of the optimal family
size or son-target via optimization exercises.

The rest of the paper is organized as follows: the next section presents the main results;
section 3 tests the empirical implications of the model with data from a wide range of
countries in Asia and Africa; and the next section concludes the discussion with some policy
implications. Proofs of all propositions are collected together in Appendix A.

2 Main Results

Many developing economies in South, East and South-East Asia and North Africa display
“son preference”, a strong preference for male children (Clark, 2000). This preference is
reflected in fertility behaviour in the form of male-preferring DSB. We take this as given and
try to draw out its implications for gender inequality.

2.1 Son Preference and the Sex Ratio at Birth

In our model, ‘son preference’ affects fertility behaviour through DSB; more concretely, DSB
implies the following stopping rule: couples continue childbearing till they attain a desired
‘target’ number of sons (k) or hit a ceiling for the maximum number of children (N). Thus,
two quite distinct stopping rules influence childbearing decisions: the target number of sons
and the maximum number of children. These two stopping rules operate precisely in that
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order and couples stop childbearing whenever one of them becomes effective. We assume
that the probability of a male and female birth are equal.

Table 1 gives the various possible completed family structures (in terms of the number of
children and their birth sequence) that would emerge in a population practicing DSB (in the
sense defined above) where the target number of sons is k and the ceiling for the maximum
number of children is N , with k ≤ N . The first column gives the total number of children in
a family; the second and third columns give the number of boys and girls respectively; and
the last column gives the probability of occurrence of the family in the population. We use
the following notation: (n

k) refers to the number of ways of choosing k out of n objects.
Note that each couple would keep continue childbearing till they reach the kth male child

or hit the ceiling (N) for the maximum number of children. In such a scenario, it is easy to
see that the minimum number of children born in any family would be k; no family would
stop at less than k children. Couples would stop when they get k, k+1, k+2, . . . , N children.

Table 1: Family Structures and Number of Sibling

Total Children Boys Girls Sibling per Child Probability
k k 0 k − 1 (1/2)k

k + 1 k 1 k (k
1)(1/2)k+1

k + 2 k 2 k + 1 (k+1
2 )(1/2)k+2

k + 3 k 3 k + 2 (k+2
3 )(1/2)k+3

...
...

...

N − 1 k N − 1− k N − 2 (N−2
N−1−k)(1/2)N−1

N k N − k N − 1 (N−1
N−k)(1/2)N

N k − 1 N − k + 1 N − 1 (N
k−1)(1/2)N

N k − 2 N − k + 2 N − 1 (N
k−2)(1/2)N

...
...

...

N 1 N − 1 N − 1 (N
1 )(1/2)N

N 0 N N − 1 (1/2)N

Furthermore, any couple that stops at k children would do so only if all the k children are
male. Similarly couples would stop at k +1, k +2, . . . , N − 1 children only if the last child is
born as the kth male child. So, for all families with total number of children between k and
N−1, the binding constraint on fertility behaviour is the intended target of k male children;
such families stop childbearing because they get the “desired number” of male children, i.e.,
k male children.

For families with N children, it no longer matters whether the target for boys has been
attained or not; the binding constraint becomes the total number of children already born.
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Couples stop childbearing because they have already hit the ceiling (which is finite). Note
that for families with N children, there can be several possibilities in terms of the number
of boys that couples finally end up with: couples could get 0, 1, 2, . . . , k male, and the rest
female, children.

Since the number of children in a randomly chosen family does not have a standard
probability distribution, we need to demonstrate that the sample space is properly specified.
The following proposition, by demonstrating that the probabilities of all possible outcomes
of the conceptual experiment enumerated in Table 1 (i.e., entries in the last column) add up
to unity, ensures that the probability space has been properly specified.

Proposition 1 Let P (N, k) =
∑N

i=k(
i−1
k−1)(

1
2
)i +

∑k−1
i=0 (N

i )(1
2
)N ; then P (N, k) = 1,

∀1 ≤ k < N .

Proof See Appendix A.

The first result that we would like to draw attention to is the following: DSB does not
have any effect on the sex ratio at birth (SRB). We note this as:

Observation 1 Let S̄ = 1 denote the ratio of newborn male to female children; then
S̄ = 1,∀N, 1 ≤ k < N .

Proof: This is obvious by the use of any standard law of large numbers. Childbearing in
different families can be considered to be identical and indepenedent experiments. Thus the
averge number of male and female children will converge to their expected values (probabil-
ity of a male and female birth). We have assumed that male and female births have equal
probability (the probability is bounded away both from zero and unity), and so the result
follows. �

This result has an important implication for countries in Asia and Africa which have
witnessed declining sex ratios and SRB’s in recent decades. Since the presence of DSB by
itself does not affect the SRB, a declining trend in SRB’s probably implies that sex-selective
abortion of female foetuses or other forms of female infanticide are gaining ground as has
been recently reported in the press5.

2.2 The Sibling Effect

The next implication of DSB that we wish to highlight is that even when there are no
intra-household biases operating against female children, there might be grounds to expect
a markedly disadvantageous situation for her in the aggregate. This is simply because the
number of siblings per girl child is, on average, more than the number of siblings per male
child. So, even when there is no bias in intra-household allocation of resources, female
children, on average, will get less resource for their development.

5For instance, see the coverage in BBC at http://news.bbc.co.uk/2/hi/south asia/4592890.stm
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To see this, let us compute the expected number of siblings for male and female children.
We will do so by calculating the expected number of siblings for a child conditional on the
sex of the child. Using Table 1, it can be seen that the expected number of siblings for a
child given that it is a boy, M̄s, becomes:

M̄s =
C(k,N)− (N − 1)(1

2
)N

1− (1
2
)N

(1)

and the expected number of siblings for a child given that it is a girl, F̄s, is:

F̄s =
C(k,N)− (k − 1)(1

2
)k

1− (1
2
)k

(2)

where,

C(k,N) =
N∑

i=k

(i− 1)(i−1
k−1)(

1

2
)i + (N − 1)

k−1∑
i=0

(N
i )(

1

2
)N (3)

In our model, we define the “sibling effect” as the difference in the expected number of
siblings for female and male children:

SE = F̄s − M̄s. (4)

Now, we are in a position to state one of the main results of this paper.

Theorem 1 SE > 0,∀N, 1 ≤ k < N .

Proof See Appendix A.

A positive sibling effect implies that, on average, female children will have more siblings
than male children. Intuitively, this comes about because of DSB. If families practice DSB
then they are more likely to stop childbearing if they have boys, rather than girls, in the
lower parities (i.e. early in the birth history). Put another way, couples are more likely to
continue childbearing if they have girls in the early parities. Thus, female children will, on
average, have more siblings than male children. If we assume that endowment (or income)
is divided equally across all families in society (which, in fact, it is not) and if we assume
further that there is no intra-family bias against female children, even then female children,
on average, will get lower resources for their health and educational development.

Of course, income is not divided equally in society; there are significant differences in
the average incomes of rich and poor households. It is also a well-known fact that poorer
families are also the larger families. Hence, the structural disadvantages of female children
will, in reality, get heightened by these twin factors of larger family size and lower average
family income for those larger families. This disadvantage can partially explain the worse
performance of female children in comparison to male children in terms of most indicators
of social well-being.
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2.3 The Birth Order Effect

As we have noted earlier, DSB implies that couples are more likely to stop childbearing if they
have boys, rather than girls, in the early parities. One implication of this is that boys will
be born as relatively younger children with families. We try to capture this quantitatively
using the notion of an average within family birth order (AWFBO) score and then draw out
its implications for gender inequality. As a simple example will immediately demonstrate,
the AWFBO score for boys (girls) measures the relative position of boys (girls) within the
birth history of the family.

For instance, consider a family with the following birth sequence: BGBBG (where B
refers to a boy and G to a girl and time moves from left to right). Here, the first-born child
was a boy, the second-born was a girl, ..., the last-born (i.e., the youngest) was a girl. For
this family, the AWFBO score for boys would be 8/3=(1+3+4)/3 and the AWFBO score
for girls would be 7/2=(2+5)/2. Note, in passing, that families with no boys (girls) will not
have a AWFBO score for boys (girls).

To compute the mean AWFBO scores for boys and girls in the population, we will use
Table 2 (a variant of Table 1). The first and last columns of Table 2 are identical to the
corresponding columns in Table 1; the second and third columns give the AWFBO scores
for boys and girls respectively. Note that the first row does not have a AWFBO score for
girls because these families have no female children; similarly, the last row does not have a
AWFBO score for boys because these families do not have male children.

To facilitate the computation, we have divided the families in the population (equiva-
lently, the rows of Table 2) into four groups. Group one has families with k children where
all k are boys (first row of Table 2); group two has families with k boys and more than k
children (first N −k rows other than the first row); group three has families with N children
and at least one boy (the last k rows apart from the last row); and group four has families
with N female children (last row).

In all the families belonging to the second group, the last child will always be a male
child; that is precisely why these families stop childbearing at that stage. In general, a family
of size n in this group (where n runs from k + 1 to N) gets the desired number of k boys,
only when the last child is a boy and the other k − 1 boys are uniformly distributed among
the first n− 1 births. So, the AWFBO score for boys, in such a case, is:

1

k
{

n−1∑
i=1

i(
k − 1

n− 1
) + n} =

n

2
(1 +

1

k
) (5)

Proceeding in a similar manner, we can find the AWFBO score for girls in the second
group of families. In the general case of n total children, there will be (n−k) girls, and since
the last child is a boy, these (n− k) girls will be uniformly distributed over the first (n− 1)
births. So, the AWFBO score for girls in such a scenario is:

1

n− k
{

n−1∑
i=1

i(
n− k

n− 1
)} =

n

2
(6)
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Table 2: Family Structure and AWFBO Scores

Total Children AWFBO score (boys) AWFBO score (girls) Probability

k k+1
2

(1/2)k

k + 1 k+1
2

(1 + 1
k
) k+1

2
(k
1)(1/2)k+1

k + 2 k+2
2

(1 + 1
k
) k+2

2
(k+1
2 )(1/2)k+2

k + 3 k+2
2

(1 + 1
k
) k+2

2
(k+2
3 )(1/2)k+3

...
...

...

N − 1 N−1
2

(1 + 1
k
) N−1

2
(N−2
N−1−k)(1/2)N−1

N N
2
(1 + 1

k
) N

2
(N−1
N−k)(1/2)N

N N+1
2

N+1
2

(N
k−1)(1/2)N

N N+1
2

N+1
2

(N
k−2)(1/2)N

...
...

...

N N+1
2

N+1
2

(N
1 )(1/2)N

N N+1
2

(1/2)N

This gives us the entries in the first part of columns two and three in Table 2.

Families in group three are characterized by the following: there is no a priori rule to
suggest what the gender of the last child will be. In fact, in all the families in this group,
boys and girls are uniformly distributed among the N birth sequences. In such a situation
the AWFBO score for boys and girls will be the same and will be given by (N + 1)/2. For
instance, a family with j boys and N children, will have the following AWFBO score for
boys:

1

j

N∑
i=1

i
j

N
=

N + 1

2

which is independent of j. Similarly, the AWFBO score for girls in such families is given by

1

N − j

N∑
i=1

i
N − j

N
=

N + 1

2

which is also independent of j. Moreover, the two are equal.

For families in group one (where there are no gilrs), the AWFBO score for boys will be
(k + 1)/2; and for families in group four (where there are no boys), the AWFBO score for
girls will be (N + 1)/2.
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Using Table 2, we can now compute the mean relative birth order for boys and girls by
averaging across families. The mean relative birth order for boys is

M̄BO =
1

1− (1/2)N
{k + 1

2k+1
+

k + 1

k

N∑
i=k

(i−1
k−1)(i/2)(

1

2
)i + (

1

2
)N(N + 1)/2

k−1∑
i=1

(N
i )}. (7)

Similarly, the mean relative birth order for female children is

F̄BO =
1

1− (1/2)k
{N + 1

2N+1
+

N∑
i=k

(i−1
k−1)(i/2)(

1

2
)i + (

1

2
)N(N + 1)/2

k−1∑
i=1

(N
i )}. (8)

Now we are in a position to state our next result.

Theorem 2 M̄BO > F̄BO,∀N, 1 ≤ k < N .

Proof See Appendix A.

There are two important implications of theorem 2. One: boys, on average, will benefit
more from the real income growth of society than girls because they enter the world at a
stage when the per capita resources of society are at a higher level. We can think of the
value of the resources that go into the upbringing of any child as the present value of the
whole future income stream that is devoted for the child’s development calculated at the
time of the birth of the child. Even assuming that there is no systematic bias in favour of
any child because of its gender, boys, on average, will get a higher value of resources because
each term in their present value sum will be higher than for girls. This is simply a reflection
of the fact that boys are born later relative to girls or are, on average, younger children in
any family. In the context of a grwoing economy, this will mean a better starting point. But
this effect will be swamped by another effect: by being born later into families, boys will
have to share resources with a larger number of siblings over the years. Since the addition
of siblings into a family divides resources at a rate far higher that the growth rate of any
developing economy, the birth-order effect will generally tend to improve gender equity.

Note that the precise magnitude of this effect will depend on the average time span
between the first and last births within families in the population. If the average time span
is large, children born in the higher parities (boys in the main) will tend to benefit because
parental income will be supplemented by elder children entering the work force; if, on the
other hand, the time span is short, children born in the lower parities (mainly girls) will not
have a large advantage because new-born children will arrive pretty soon. These effects seem
to suggest an optimal time span which will improve gender equality the most. 6

Of course, if we look at non-monetary aspects of gender inequality, the story becomes
a little more complicated: the fact that girls, on average, are born as elder children in
families will act against them in the context of a developing economy. In poorer and larger
families, where both parents work to make ends meet, part of the parental responsibility

6Computation of the optimal rate is beyond the scope of this paper.
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towards younger children will be passed on to elder children in the family. Since most of
the elder children are girls, this responsibility will be disproportionately borne by them.
Being burdened with sundry housework and the responsibilities associated with caring for
younger children, these girls will not be able to devote their full time and energy towards
their own education or other recreational activities. This, it must be stressed, is not the
result of any intentional bias in the household against girls; all elder children in larger and
poorer families will have to shoulder the responsibility of bringing up the younger children.
Since girls are, on average, more likely to be born as elder children, the lion’s share of this
responsibility fall on their shoulder, despite the best intentions of parents. Additionally, it
must be noticed that this kind of disadvantageous position of girls will not get reflected in
household expenditure data. So, even when there are no expenditure biases against female
children within families (which most econometric studies seem to suggest), a substantially
disadvantageous position for the girl child can be expected on the basis of the non-monetary
effects of the birth order effect alone. This largely counteracts the positive impact of the
birth-order effect for girls, if any.

3 Empirical Analysis

Empirical analysis in this paper is carried out in two steps. In the first step, we test for the
presence of sibling and birth order effects in the sample as evidence of DSB; in the second
step, we estimate the effect of covariates on son targeting behaviour, total fertility rates
and the interaction between the two (using household level data on birth histories) with the
method of maximum likelihood.

3.1 Sibling and Birth Order Effects

We use data from the Demographic and Health Surveys (formerly known as the World
Fertility Survey and the Contraceptive Prevalence Survey), which is part of a standardized
survey conducted in over 70 developing countries by USAID; we use data from the latest
available survey or the one closest to the year 20007. Apart from being a comprehensive
survey covering almost all relevant aspects of health and educational indicators, it also
provides detailed information on the birth history of the interviewed women (between the
ages of 15 and 49 years). The detailed birth history allows us to know the exact family
structure and birth sequence for each of the interviewed women, and thus test our hypotheses
regarding the sibling effect and the birth order effect8. We present results for several countries
in South Asia, South-East Asia, North Africa and Sub-Saharan Africa in Tables 5 and 6.
We also present results for India disaggregated at the state level in Table 7.

The results are along expected lines. Most of the countries in South Asia, South-East
Asia and North Africa display significant sibling and birth order effects. Countries in Sub-

7Details of the data-set for each country is given in Table 3 and 4
8DHS data can be downloaded, with prior permission, from the following website:

http://www.measuredhs.com/
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Saharan Africa, on the other hand, do not throw up any statistically significant sibling or
birth order effects. A population which has both high fertility (high value of N) and a
high numerical value of the son-target (high value of k) can have small or zero sibling and
birth order effects. This, rather than the absence of son preference, seems to be the case
for countries in Sub-Saharan Africa. This conclusion emerges from two facts. One, when
we numerically compute the sibling and birth order effects, we see that whenever N and k
are close together, sibling and birth order effects are small or zero. Two, commonly used
measures of son preference (like the ratio of desired sons to daughters, the proportion of
families using contraceptive after two sons compared to those using contraceptives after two
girls, etc) show that many countries of Sub-Saharan Africa display strong son preference9.

For India, the two effects are strong for the states in the Northern, Central and Western
regions; Kerala in the South and the states of the North East generally do not show these
effects. This is in accord with much evidence (anecdotal and otherwise) on the prevalence
of patriarchal practices in different geographical regions of the country.

3.2 The Empirical Model

In the second step of the empirical analysis, we analyze the effect of important covariates on
son targeting behaviour, fertility behaviour and the interaction between the two for countries
which display the presence of DSB (as seen in the previous sub-section). To do so, we estimate
the parameters of our simple model using the method of maximum likelihood.

We start by introducing some notation. Let Si denote the completed birth sequence for
the ith family; for instance, Si could be BBG (where B stands for boy and G for girl). Let
Ni denote the maximum number of children that family i would like to have; let ki denote
the target number of boys for family i. Let Xi denote a vector of covariates which determine
the probability of son targeting behaviour for family i; let Zi denote a vector of covariates
which determines fertility behaviour (i.e., the desired maximum number of children, Ni) of
family i.

Note that this analysis concerns the population of families with completed birth histories.
To estimate the effect of covariates on targeting and fertility behaviour, we will calculate the
joint likelihood of observing a given birth sequence (Si) and maximum number of children
(Ni); in other words, we will compute P (Si, Ni) where P (.) denotes probability. To do so,
we proceed as follows.

We introduce Ti, a dichotomous unobservable variable which indicates whether family i
targets sons or not. Ti = 0 means that the family does not target; and Ti = 1 implies that
family i is a son targeter. Finally, we let Ti be determined by a vector of covariates, Xi, in
the following manner:

Ti =

{
0 if X ′

iβ + εi ≤ 0
1 if X ′

iβ + εi > 0
(9)

9We do not report these results in any depth here because they are not the main issues of this paper;
details are, however, available from the authors upon request.
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where Xi is a (k × 1) vector of co-variates which determine whether a particular family
‘targets’ sons or not, β is a (k × 1) vector of parameters to be estimated and εi ∼ N(0, 1).
To allow for the fact that targeting is unobservable, we make it stochastic.

To get the likelihood for the observed birth sequence and maximum number of children
for the ith family, note that

P (Si, Ni) = P (Si, Ni|Ti = 0)P (Ti = 0) + P (Si, Ni|Ti = 1)P (Ti = 1)

= P (Si|Ni, Ti = 0)P (Ni|Ti = 0)P (Ti = 0)

+ P (Si|Ni, Ti = 1)P (Ni|Ti = 1)P (Ti = 1)

= I(n(Si) = Ni)(
1

2
)NiP (Ni|Ti = 0)P (Ti = 0) + P (Si|Ni, Ti = 1)P (Ni|Ti = 1)P (Ti = 1)

= I(n(Si) = Ni)(
1

2
)NiP (Ni|Ti = 0)Φ(−X ′

iβ)

+ P (Si|Ni, Ti = 1)P (Ni|Ti = 1)[1− Φ(−X ′
iβ)] (10)

where Φ(.) denotes the standard normal cdf, I(.) denotes the indicator function and n(Si)
denotes the number of children in birth sequence Si.

Note that, because of DSB, when a family does not target sons, the effective stopping
rule for childbirth becomes the maximum number of children that the family desires to have,
Ni; hence the probability of observing Si given Ni in such a case (i.e., P (Si|Ni, Ti = 0)) is
I(n(Si) = Ni)(

1
2
)Ni . The indicator function is meant to rule out the possibility that a family

which stops childbearing before hitting the desired maximum number of children could be a
non-targeter. Any family which stops childbearing before hitting the ceiling, Ni, has to be
a son targeter in our model. This gives us the first term in (10). The second term in (10)
comes from son targeters; so we need to compute P (Si|Ni, Ti = 1).

Note that when a family targets sons, it’s target, ki, can range anywhere from 1 to Ni−1;
targeting ki = Ni sons with a ceiling for the maximum number of children at Ni is equivalent
to not targeting. Since we cannot observe ki (the target number of sons for a family), we
condition on ki and then integrate it out as follows:

P (Si|Ni, Ti = 1) =

Ni−1∑
ki=1

P (Si|Ni, ki, Ti = 1)P (ki|Ni, Ti = 1) (11)

where P (Si|Ni, ki, Ti = 1) is the probability of observing Si given Ni, ki and Ti = 1 (son
targeting) 10; P (ki|Ni, Ti = 1) is the probability of targeting ki sons given that the maximum
number of children is Ni. The summation follows from an application of the law of total
probability.

Two things should be immediately noted about (11). First, the summation runs till
(Ni − 1) because ki = Ni is equivalent to not targeting. Second, we only consider cases

10In Appendix B, we have sketched a simple method for computing the probabilities P (Si|Ni, ki, Ti = 1).
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where Ni ≥ 2; this follows from the intuition that families with a planned maximum number
of children below 2 cannot ‘target’ sons in any meaningful sense. Using (11), therefore, (10)
becomes:

P (Si, Ni) = I(n(Si) = Ni)(
1

2
)NiP (Ni|Ti = 0)Φ(−X ′

iβ)

+ [1− Φ(−X ′
iβ)]

Ni−1∑
ki=1

P (Si|Ni, ki, Ti = 1)P (ki|Ni, Ti = 1)P (Ni|Ti = 1).

Next, we assume that Ni conditional on Ti is distributed as a Poisson random variable
with conditional mean given by λi. We try to capture two crucial facts with this formulation:
one, that Ni conditional on Ti is a count variable; and two that there is interaction between
the decision of son targeting and the total number of children planned (the interaction term
appears in the expression for the conditional mean, λi).

P (Ni|Ti) =
exp(−λi)[λi]

Ni

Ni!
,

where

λi = exp(Z ′
iγ + αTi). (12)

Note that in the above expression α captures the effect of ‘son targeting’ on the total fertility
rate and Zi is a set of covariates which affects family size. Moreover, since Ti is a dichotomous
variable, we have

P (Ni|Ti = 0) =
exp(− exp(Z ′

iγ))[exp(Z ′
iγ)]Ni

Ni!
(13)

and

P (Ni|Ti = 1) =
exp(− exp(Z ′

iγ + α))[exp(Z ′
iγ + α)]Ni

Ni!
(14)

Using (13), (14) and (11), we can write (10) as:

P (Si, Ni) = I(n(Si) = Ni)(
1

2
)Ni

exp(− exp(Z ′
iγ))[exp(Z ′

iγ)]Ni

Ni!
Φ(−X ′

iβ)

+

Ni−1∑
ki=1

P (Si|Ni, ki, Ti = 1)P (ki|Ni, Ti = 1)

× exp(− exp(Z ′
iγ + α))[exp(Z ′

iγ + α)]Ni

Ni!
[1− Φ(−X ′

iβ)] (15)
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The log-likelihood for the observed sample, then, becomes:

l = ln(L) =
n∑

i=1

ln(P (Si, Ni)) (16)

where n is the number of families in the sample and P (Si, Ni) is substituted from (15).
Maximizing l will give the estimates of the parameters of interest in the model: α (inter-
action term), β (targeting behaviour), γ (determinants of family size) and the probabilities
P (ki|Ni, Ti = 1). The following interpretations naturally emerge for the parameters in our
model: α captures the effect of son targeting on the total fertility rate; β captures the effect
of covariates on the probability of targeting sons; γ provides the effect of covariates on the
maximum number of children (the total fertility rate) desired by families and P (ki|Ni, Ti = 1)
is the probability of targeting ki sons given that the family desires a maximum of Ni children.

3.3 Results for India

Results for India are presented in Tables 8, 9 and 10. The following covariates have been
used in the analysis: age is the age of the respondent in years; edu measures the years of
formal education; rur is a dummy variable for location (it is 0 for urban areas and 1 for
rural areas); work is a dummy variable to capture whether the respondent participates in
the labour market or not; rich, middle and poor are income/class 11 dummies (we have left
out rich); other, scaste, stribe and obc are caste dummies (we have left out other); hindu and
muslim are religion dummies capturing membership in the two largest religious communities
in India; jfam is a dummy for whether the respondent lives in a joint family or not; and,
contra is a dummy for use of contraceptives (it takes the value of 1 if the respondent uses
contraceptives and 0 otherwise).

The first thing to note is that the signs on most variables in Table 8 are along expected
lines. Let us first look at the targeting equation (9). The covariates that do not seem to
affect the probability of targeting are the following: edu, middle, obc. In particular, the
estimates suggest that the probability of targeting is not affected by the years of formal
education of the respondent (mother). The income dummies show that compared to rich
families, the middle-class families target neither more or nor less. Along the same lines, the
caste dummies indicate that other backward caste (OBC) families target neither more nor
less than upper caste families.

The covariates that affect the probability of targeting are the following: rur, work, poor,
jfam, contra, scaste, stribe, hindu, muslim. The estimates indicate that families in rural
areas are more likely to target sons through male-preferring stopping behaviour than urban
families; thus geographical location seems to matter for gender inequality. Next, we see that
participation in the labour force by the respondent does affect the probability of targeting

11Since there are no income variables in DHS, we had to construct income/class dummies in the following
manner: a respondent is designated rich if she owns a car/truck and has electricity connection in her house;
a respondent is designated middle if she has electricity in her house but does not own a car/truck; and a
respondent is designated poor if she neither owns a car/truck nor has an electricity connection to her house.
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and that too positively; this is rather surprising. Income dummies show that compared
to rich families, poorer families have a higher probability of son targeting; this is more
or less in agreement with anecdotal evidence. Residence in a joint-family increases the
probability of targeting; this is along expected lines because the respondent’s (i.e., daughter-
in-law’s) authority is severely curtailed in a joint family set-up. Next, we see that the use
of contraceptives significantly increases the probability of targeting; this is to be expected
because without contraceptives, it would be difficult to actually enforce differential stopping
(or any other kind of stopping) behaviour. The caste dummies suggests that compared to
‘other’ (the upper caste), both scheduled caste and schedule tribe families are more probable
to practice targeting; the difference, on the other hand, between upper caste and OBC
families seem to be insignificant, as already noted. Another counter-intuitive result is the
one for religion dummies. Our results suggest that Hindu families are less likely to target
sons than non-Hindu families; the same result obtains for Muslim families too. Anecdotal
evidence on Hinduism suggests that there is a religious sanction behind son preference; hence,
it is surprising that this does not show up in the data.

When we turn to the equation for the determination of family size (12), we notice that all
the variables in Table 8 significantly affect the dependent variable; the weakest effect is from
the work dummy, which has a negative impact on desired family size. As would be expected,
years of formal education reduces the average family size; rural families have larger families
(again, along expected lines). The income dummies show some interesting results: compared
to rich households, both middle-class and poor households have larger average family sizes,
and the effect is stronger for poorer families. The caste dummies show that compared to the
upper caste families, SC, ST and OBC families have larger average family sizes. Turning to
the religion dummies, we see that both hindu and muslim families have larger family size
than non-hindu and non-muslim families, though the effect is much stronger for the latter
group.

Along expected lines, the interaction term comes out as positive and highly significant;
families which are more likely to be targeters will tend to have larger families. This is to be
expected because son preference will induce couples to continue childbearing in their attempt
to attain the target for boys. If we look at the targeting probabilities in Table 9, we notice a
simple pattern: conditional on targeting, couples are more likely to target higher than lower
number of sons. So, for instance, families which have a ceiling at five children are more likely
to target four boys than three than two than one. The same is true for families having a
ceiling at three and six. But families with a desired family size of four display a slightly
different behaviour; for these families, the probability of targeting two sons is marginally
higher than the probability of targeting three sons.

To test for the joint significance of all the variables in the targeting equation (9), we
performed an LR test. The results for the restricted model is given in Table 10. The LR
test statistic, a χ2 random variable with 12 degrees of freedom, has a value of 877.94; thus,
we can easily reject the null hypothesis that all the variables in the targeting equation are
insignificant.
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4 Conclusion

In this paper we have developed a simple model that can account for the generation and
perpetuation of gender inequality in societies marked by son preference. Our simple analysis
shows that even in the absence of intra-household biases in resource allocation against the
girl child there is reason to expect a substantially disadvantageous position for her. There
are two distinct mechanisms - one static and the other dynamic - by which the existence of
son preference impacts on gender inequality. If we look at a developing economy at any point
in time, the distribution of children into families is such that the average number of siblings
for female children are greater than that for their male counterparts. If we look at the same
society over time, we find that boys are born as relatively younger children in families. We
have argued that both these facts have important implications for gender inequality. Our
empirical analysis suggests that both these effects are strong in many countries of South
Asia, South-East Asia and North Africa. We find an absence of these effects in the countries
of Sub-Saharan Africa.

One implication of the simple model of this paper is that DSB does not affect the popu-
lation sex ratio at birth (SRB). Since the SRB has been declining in India over the past few
decades (Agnihotri, 2001), this seems to suggest that sex-selective abortion (foeticide) and
female infanticide are gaining ground in developing countries like India. One recent paper
(Oster, 2005) has tried to suggest a biological explanation for this phenomenon: the author
suggests that the prevalence of hepatitis-B might be able to explain the declining SRB. We
would like to conduct further research on this area as an extension of the analysis developed
in this paper.

One policy implication of this analysis is that in societies where son preference is widespread,
one way to counter the negative effects of DSB on female children is for the State to actively
participate in the provision of education and health. Not only should the government provide
free primary and secondary education, it should also make it compulsory. Additionally, the
government should provide free health-care for all children up to the age of 25 years. These
policy initiatives might be able to counter the effects of the “sibling effect” and the “birth
order effect” which rests on expenditure for children’s development being channeled through
the family.

5 Appendix A

We will need the following two lemmas for proving Proposition 1.

Lemma 1 Let P (N, k) =
∑N

i=k(
i−1
k−1)(

1
2
)i+

∑k−1
i=0 (N

i )(1
2
)N ; then P (n, k+1) = P (n, k),∀k ≤ N

Proof: Rewrite P (N, k) = (1
2
)k

∑N−k
i=0 (k−1

k+i−1)(
1
2
)i + (1

2
)N

∑k−1
i=0 (N

i ). The expression for N
and (k + 1) is

P (N, k + 1) = (
1

2
)k+1

N−k−1∑
i=0

(k+i
k )(

1

2
)i + (

1

2
)N

k∑
i=0

(N
i )

18



This can be re-written using the following equality:

(k+i
k ) = (k+i−1

k ) + (k+i−1
k−1 ). (17)

Thus

P (n, k + 1) = (
1

2
)k+1[

N−k−1∑
i=0

(k+i−1
k )(

1

2
)i +

N−k−1∑
i=0

(k+i−1
k−1 )(

1

2
)i] + (

1

2
)N

k∑
i=0

(N
i )

= (
1

2
)k+2

N−k−1∑
i=0

(k+i−1
k )(

1

2
)i−1 + (

1

2
)N

k∑
i=0

(N
i ) + (

1

2
)k+1

N−k−1∑
i=0

(k+i−1
k−1 )(

1

2
)i

= A + B

where

A = (
1

2
)k+2

N−k−1∑
i=0

(k+i−1
k )(

1

2
)i−1 + (

1

2
)N

k∑
i=0

(N
i )

= (
1

2
)k+2[

N−k−1∑
i=0

(k+i−1
k )(

1

2
)i−1 + (

1

2
)N−k−1(N−1

k )]− (
1

2
)N+1(N−1

k ) + (
1

2
)N

k∑
i=0

(N
i )

= (
1

2
)k+2

N−k−1∑
j=0

(k+j
k )(

1

2
)j + (

1

2
)N

k∑
i=0

(N
i )− (

1

2
)N+1(N−1

k )

= (
1

2
){(1

2
)k+1

N−k−1∑
i=0

(k+i
k )(

1

2
)i + (

1

2
)N

k∑
i=0

(N
i )}+ (

1

2
)N+1

k∑
i=0

(N
i )− (

1

2
)N+1(N−1

k )

= (
1

2
)P (n, k + 1) + (

1

2
)N+1

k∑
i=0

(N
i )− (

1

2
)N+1(N−1

k )

and

B = (
1

2
)k+1

N−k−1∑
i=0

(k+i−1
k−1 )(

1

2
)i

= (
1

2
)k+1[

N−k−1∑
i=0

(k+i−1
k−1 )(

1

2
)i + (

1

2
)N−k(N−1

k−1 )]− (
1

2
)N−k(

1

2
)k+1(N−1

k−1 )

= (
1

2
)k+1

N−k∑
i=0

(k+i−1
k−1 )(

1

2
)i − (

1

2
)N+1(N−1

k−1 )
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Adding A and B, we get:

P (n, k + 1) = (
1

2
)P (n, k + 1)− (

1

2
)N+1(N−1

k )

+ (
1

2
)k+1

N−k∑
i=0

(k+i−1
k−1 )(

1

2
)i + (

1

2
)N+1

k∑
i=0

(N
i )

= (
1

2
)P (n, k + 1)− (

1

2
)N+1[(N−1

k ) + (N−1
k−1 )]

+ (
1

2
)k+1

N−k∑
i=0

(k+i−1
k−1 )(

1

2
)i + (

1

2
)N+1

k∑
i=0

(N
i )

= (
1

2
)P (n, k + 1)− (

1

2
)N+1[(N−1

k ) + (N−1
k−1 )]

+ (
1

2
){(1

2
)k

N−k∑
i=0

(k+i−1
k−1 )(

1

2
)i + (

1

2
)N

k∑
i=0

(N
i )}

Note that in the second line, we have used (17); rearranging the above, we get:

(
1

2
)P (n, k + 1) = (

1

2
){(1

2
)k

N−k∑
i=0

(k+i−1
k−1 )(

1

2
)i

+ (
1

2
)N

k−1∑
i=0

(N
i )}+ (

1

2
)N+1(N

k )− (
1

2
)N+1[(N−1

k ) + (N−1
k−1 )]

= (
1

2
)P (n, k) + (

1

2
)N+1[(N

k )− (N−1
k )− (N−1

k−1 )]

Hence, P (n, k + 1) = P (n, k), where the second term is zero by (17). �

Lemma 2 P (n, 1) = 1,∀n

Proof: Since P (N, k) = (1
2
)k

∑N−k
i=0 (k−1

k+i−1)(
1
2
)i + (1

2
)N

∑k−1
i=0 (N

i ), we have,

P (n, 1) = (
1

2
)

N−1∑
i=0

(i
0)(

1

2
)i + (

1

2
)N

= (
1

2
)[1 + (

1

2
) + . . . + (

1

2
)N−1] + (

1

2
)N

= 1

This completes the proof. �

Proof of Proposition 1 The proof now follows because using Lemma 1 and Lemma 2, we
have: P (n, k) = P (n, k − 1) = . . . = P (n, 1) = 1. �
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Proof of Theorem 1 Recall from (3) that

C(k,N) =
N∑

i=k

(i−1
k−1)(

1

2
)i + (N − 1)

k−1∑
i=0

(N
i )(

1

2
)N . (18)

Notice that C(k,N) is a weighted average of the following terms:(k− 1), k, (k +1), . . . , (N −
2), (N − 1); where the weights sum to unity by Proposition 1. Hence

k − 1 ≤ C(k) ≤ N − 1 (19)

Now, re-writing (1), we get:

Ms =
C(k)− (1

2
)N(N − 1)

1− (1
2
)N

=
(2N − 1)C(k) + C(k)−N + 1

2N − 1

= C(k) +
C(k)−N + 1

2N − 1

Similarly, rewriting (2), we get:

Fs =
C(k)− (1

2
)k(k − 1)

1− (1
2
)k

= C(k) +
C(k)− k + 1

2k − 1

We will have proved Theorem 1 once we prove the following

Lemma 3 Ms ≤ Fs,∀k < N

Proof: Taking the difference between Ms and Fs, we have

Ms − Fs =
C(k)−N + 1

2N − 1
− C(k)− k + 1

2k − 1

=
C(k)(2k − 1)−N(2k − 1) + (2k − 1)− C(k)(2N − 1) + k(2N − 1)− (2N − 1)

(2N − 1)(2k − 1)

(20)

Since the denominator in the above expression is always positive (because in any meaningful
situation both k and N are greater than 0), we only need to verify that the numerator is
non-positive. Denoting the numerator by NUM , we have:

NUM = C(k)(2k − 2N)−N2k + k2N + N − k + 2k − 2N

≤ (N − 1)(2k − 2N)−N2k + k2N + N − k + 2k − 2N , (since C(k) ≤ N − 1)

≤ (−N + k)2N + (N − k)

≤ (N − k)(1− 2N)

≤ 0,∀N > 0.
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This completes the proof. �

We require two simple lemmas for the proof of Theorem 2.

Lemma 4 (1 + 1
k
) > (1− 1

2N )(1− 1
2k ), ∀1 < k < N .

Proof This is obvious since

1

k
>

1

2N
(

1

2k
− 1)− 1

2k
, ∀1 < k ≤ N.

Lemma 5 k+1
2k+1 (1− 2−k) > N+1

2N+1 (1− 2−N), ∀1 < k < N .

Proof It suffices to prove the following:

k + 1

2k+1
(1− 2−k) >

k + 2

2k+2
(1− 2−k−1)

for all 1 < k < N ; which is equivalent to proving

2(k + 1)(1− 1

2k
) > (k + 2)(1− 1

2k+1
)

i.e., 2(k + 1)− k + 1

2k−1
> (k + 2)− k + 2

2k+1

i.e., k2k−1 > (1/4)[4(k + 1)− (k + 2)]

i.e., 4k.2k−1 > 3k − 2

which is true because 4k.2k−1 > 4k > 3k > 3k − 2, for k > 1. �

Proof of Theorem 2: We prove the theorem for two cases: k = 1 and k > 1.
Case 1: In this case, when k = 1, we have

M̄BO =
1

1− (1/2)N
{1

2
+ 2

N∑
i=1

(i/2)(
1

2
)i)}

and

F̄BO =
1

1− (1/2)
{N + 1

2N+1
+

N∑
i=1

(i/2)(
1

2
)i}.

So, in this case, it suffices to show that

1

1− (1/2)N
>

N + 1

2N+1
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which is true since

2N2N+1 > (N + 1)2N > (N + 1)2N − (N + 1)

Case 2: For this case, when k > 1, comparing the expressions in (7) and (8) and using
the results in Lemma 4 and Lemma 5, we get the desired result. �

6 Appendix B

In this appendix, we sketch the method that we have used to compute the conditional prob-
abilities, P (Si|Ni, ki, Ti = 1), that have been subsequently used in the maximum likelihood
estimation 12. The logic of our method is straightforward. For every family, we are given
a completed birth sequence (Si) and the planned maximum number of children(Ni). For
such a family, we must compute the following Ni− 1 conditional probabilities: P (Si|Ni, ki =
1, Ti = 1), P (Si|Ni, ki = 2, Ti = 1), . . . , P (Si|Ni, ki = Ni − 1, Ti = 1). We need to compute
all these probabilities because we do not observe the desired target for sons.

Since, a priori, we do not know the desired target (for sons) for family i, we need to
allow for all the feasible possibilities. So, when a family states that the maximum number
of children that it can produce is Ni, we need to allow for the possibilities that the family
targets 1 son, 2 sons, . . ., Ni − 1 sons. Of course the actual birth sequence might assign zero
probability to some of this possibilities; but we cannot rule any of thes out a priori.

Now, to compute something like P (Si|Ni, ki, Ti = 1), we merely need to observe whether
the family has any child after the kth

i son. If there is a child after the kth
i son, then we assign

zero probability to P (Si|Ni, ki, Ti = 1); else we assign it a probability of (1/2)n, where n is
the number of children in the sequence Si.

An example might clarify matters. Suppose a family reports that the maximum number
of children it can have is 4 and the birth sequence (starting with the fisrt born child) for the
family is observed to be GGBG (where G stands for a girl and B stands for a boy). For such
a family, we need to compute the following probabilities: P (GGBG|Ni = 4, ki = 1, Ti = 1),
P (GGBG|Ni = 4, ki = 2, Ti = 1), and P (GGBG|Ni = 4, ki = 3, Ti = 1). Since there
is a child after the first boy, this family could not possibly be targeting one son; hence
P (GGBG|Ni = 4, ki = 1, Ti = 1) = 0. But the family could conceivably be targeting two or
even three sons; these possibilities are not ruled out by the observed birth sequence. Hence
P (GGBG|Ni = 4, ki = 2, Ti = 1) = (1/16), and similarly P (GGBG|Ni = 4, ki = 3, Ti =
1) = (1/16).

To clarify matters further, take another example. Suppose the family in question reports
a maximum desired family size (number of children) of 4 and we observe the following com-
pleted birth sequence for the same family: BGB. Since there is a child after the first boy, this

12STATA code for these and other computations, including the maximum likelihood estimation, are avail-
able from the authors upon request.
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family could not possibly be targeting one son; hence P (BGB|Ni = 4, ki = 1, Ti = 1) = 0.
But the family could be targeting two sons. Hence P (BGB|Ni = 4, ki = 2, Ti = 1) = (1/8).
And since the family stops at three children (with two sons), it cannot be targeting three
sons; to target three sons, the family should have gone for another child and not stopped at
the third child (and second son). Hence, P (BGB|Ni = 4, ki = 3, Ti = 1) = 0.
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Table 3: Datasets for Asia and North Africa
Country Survey Year Size (women)
Asia
Bangladesh Demographic and Health Survey 1999-2000 10544
India National Family Health Survey 1998-1999 90303
Indonesia Demographic and Health Survey 2002-2003 29483
Nepal Demographic and Health Survey 2001 8726
Pakistan Demographic and Health Survey 1990-1991 6611
Phillipines Demographic and Health Survey 2003 13633
Sri Lanka Demographic and Health Survey 1987 5865
Thailand Demographic and Health Survey 1987 6775
North Africa
Armenia Demographic and Health Survey 2000 6430
Egypt Demographic and Health Survey 2000 15573
Morocco Demographic and Health Survey 2003 16798
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Table 4: Datasets for Sub-Saharan Africa
Country Survey Year Size
Benin Enquete Demographique et de Sante 2001 6219
Burkina Faso Demographic and Health Survey 2003 12477
Burundi Enquete Demographique et de Sante 1987 3970
Cameroon Enquete Demographique et de Sante 2004 10656
Central African Republic Demographic and Health Survey 1994-1995 5884
Chad Demographic and Health Survey 1996-1997 7454
Comoros Enquete Demographique et de Sante 1996 3050
Cote d’Ivoire Enquete Demographique et de Sante 1998 3040
Ethiopia Demographic and Health Survey 2000 15367
Gabon Enquete Demographique et de Sante 2000-2001 6183
Ghana Demographic and Health Survey 1998-1999 4843
Guinea Demographic and Health Survey 1999 6753
Kenya Demographic and Health Survey 2003 8195
Madagascar Enquete Demographique et de Sante 1997 7060
Malawi Demographic and Health Survey 2000 13220
Mali Demographic and Health Survey 2000 12849
Mozambique Demographic and Health Survey 2003 12418
Namibia Demographic and Health Survey 2000 6755
Niger Enquete Demographique et de Sante 1998 7577
Nigeria Demographic and Health Survey 1999 9810
Rwanda Demographic and Health Survey 2000 10421
South Africa Demographic and Health Survey 1998 11735
Sudan Demographic and Health Survey 1989-1990 5860
Tanzania Demographic and Health Survey 1999 4029
Uganda Demographic and Health Survey 2000-2001 7246
Zambia Demographic and Health Survey 2001 7658
Zimbabwe Demographic and Health Survey 1999 5907
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Table 5: Sibling and Birth Order Effects for Asia and North Africa
Sibling Effect∗ Birth Order Effect∗∗

Effect t-stat Effect t-stat
Asia
Bangladesh 0.07 2.62 0.04 2.36
India 0.14 17.47 0.06 9.19
Indonesia 0.0 0.08 0.03 2.81
Nepal 0.18 6.57 0.03 1.61
Pakistan 0.06 1.33 -0.05 -1.46
Phillipines 0.03 1.15 -0.01 -0.57
Sri Lanka 0.04 1.33 0.02 0.65
Thailand 0.03 0.82 0.0 0.08
North Africa
Armenia 0.09 4.14 0.1 5.18
Egypt 0.06 2.92 0.04 2.86
Morocco 0.04 1.43 -0.02 -1.07
∗Sibling effect is the difference in the average number of siblings per
child between a girl and a boy.
∗∗Birth order effect is the difference in the average within-family
birth order of boys and girls.
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Table 6: Sibling and Birth Order Effects for Sub-Saharan Africa
Sibling Effect∗ Birth Order Effect∗∗

Effect t-stat Effect t-stat
Benin 0.03 0.44 0.0 0.04
Burkina Faso 0.03 0.75 -0.02 -0.53
Burundi 0.06 0.74 -0.05 -0.72
Cameroon 0.01 0.09 -0.04 -0.92
Central African Republic -0.01 -0.13 -0.01 -0.23
Chad -0.05 -0.7 0.06 1.18
Comoros -0.13 -1.23 0.02 0.19
Cote d’Ivoire 0.08 0.76 -0.09 -1.15
Ethiopia 0.01 0.28 -0.02 -0.73
Gabon -0.03 -0.36 0.0 0.06
Ghana 0.0 -0.03 -0.08 -1.79
Guinea -0.01 -0.26 -0.01 -0.34
Kenya 0.02 0.5 -0.02 -0.56
Madagascar -0.02 -0.41 0.01 0.22
Malawi -0.04 -1.13 -0.03 -0.97
Mali 0.02 0.37 0.02 0.88
Mozambique -0.02 -0.56 0.02 0.73
Namibia -0.04 -0.82 0.02 0.71
Niger 0.03 0.41 0.0 -0.06
Nigeria 0.11 1.78 -0.08 -1.77
Rwanda 0.01 0.24 0.01 0.38
South Africa 0.03 0.88 -0.03 -1.45
Sudan -0.02 -0.31 -0.02 -0.43
Tanzania 0.03 0.38 0.01 0.13
Uganda 0.01 0.12 0.01 0.40
Zambia -0.01 -0.09 0.0 -0.09
Zimbabwe 0.0 0.04 0.02 0.55
∗Sibling effect is the difference in the average number of siblings per child
between a girl and a boy.
∗∗Birth order effect is the difference in the average within-family birth
order of boys and girls.
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Table 7: Sibling and Birth Order Effects for Indian States
Sibling Effect∗ Birth Order Effect∗∗

Effect t-stat Effect t-stat
Andhra Pradesh 0.04 1.16 0.07 2.79
Arunachal Pradesh 0.10 1.17 -0.08 -1.29
Assam 0.11 2.35 -0.04 -1.24
Bihar 0.17 5.29 -0.03 -1.39
Delhi 0.14 3.31 0.06 1.99
Goa 0.12 1.77 0.04 0.87
Gujrat 0.20 5.53 0.12 4.42
Haryana 0.28 6.74 0.07 2.37
Himachal Pradesh 0.19 5.35 0.11 4.05
Jammu and Kashmir 0.12 2.75 0.11 3.29
Karnataka 0.08 2.42 0.07 2.54
Kerala 0.02 0.54 0.01 0.19
Madhya Pradesh 0.19 6.36 0.03 1.30
Mahrashtra 0.15 5.41 0.11 5.25
Manipur 0.15 2.05 0.12 2.23
Meghalaya 0.07 0.65 -0.09 -1.04
Mizoram 0.05 0.62 0.10 1.64
Nagaland 0.09 0.83 -0.06 -0.81
Orissa 0.16 4.7 0.02 0.78
Punjab 0.18 5.1 0.21 7.48
Rajashthan 0.19 6.19 0.09 3.9
Sikkim 0.18 2.35 0.00 0.09
Tamil Nadu 0.06 2.11 0.06 2.63
Tripura 0.15 2.13 0.04 0.72
Uttar Pradesh 0.18 6.59 0.01 0.53
West Bengal 0.12 3.12 0.01 0.57
∗Sibling effect is the difference in the average number of siblings per
child between a girl and a boy.
∗∗Birth order effect is the difference in the average within-family birth
order of boys and girls.
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Table 8: Estimation∗ results for India (unrestricted model)

Variable Coefficient (Std. Err.)

Average family size: (γ)
age 0.02 (0.000)
edu -0.016 (0.001)
rur 0.053 (0.006)
work -0.011 (0.005)
middle 0.359 (0.013)
poor 0.411 (0.014)
scaste 0.084 (0.007)
stribe 0.153 (0.009)
obc 0.034 (0.006)
hindu 0.064 (0.009)
muslim 0.246 (0.011)

Interaction term: (α)
Intercept 0.055 (0.008)

Targeting behaviour: (β)
edu 0.000 (0.002)
rur 0.059 (0.025)
work 0.074 (0.022)
middle 0.088 (0.07)
poor 0.214 (0.074)
jfam 0.093 (0.028)
contra 0.528 (0.023)
scaste 0.075 (0.031)
stribe 0.302 (0.037)
obc 0.016 (0.026)
hindu -0.201 (0.035)
muslim -0.129 (0.049)
Intercept -1.298 (0.080)
∗For a definition of the empirical model,
refer to (15) in the main text.
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Table 9: Estimated targeting probabilities∗ for India (unrestricted model)

targeting probability
P(k=1|N=3) 0.28
P(k=2|N=3) 0.72
P(k=1|N=4) 0.17
P(k=2|N=4) 0.43
P(k=3|N=4) 0.40
P(k=1|N=5) 0.07
P(k=2|N=5) 0.20
P(k=3|N=5) 0.32
P(k=4|N=5) 0.41
P(k=1|N=6) 0.05
P(k=2|N=6) 0.13
P(k=3|N=6) 0.23
P(k=4|N=6) 0.25
P(k=5|N=6) 0.33
∗For a definition of these probabilities see Appendix B. All the probabilities reported
in this table are statistically siginificant at the 5 % level.

Table 10: Estimation∗∗ results for India (restricted model)

Variable Coefficient (Std. Err.)

Average family size: (γ)
age 0.020 (0.000)
edu -0.017 (0.001)
rur 0.054 (0.006)
work -0.011 (0.005)
middle 0.361 (0.013)
poor 0.414 (0.014)
scaste 0.085 (0.007)
stribe 0.156 (0.009)
obc 0.034 (0.006)
hindu 0.063 (0.009)
muslim 0.246 (0.011)

Interaction term: (α)
Intercept 0.044 (0.007)

Targeting behaviour: (β)
Intercept -1.069 (0.011)
∗∗For a definition of the empirical model,
refer to (15) in the main text.
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