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1 Introduction

In 1970 the U.S. Commission on Population Growth and the American Fu-
ture asked the research organization Resources for the Future to undertake a
project to identify the principal resource and environmental consequences of
future population growth in the United States. Two years later, the results
of the research were published in the volume Population, Resources, and the
Environment, edited by Ronald G. Ridker [24]. The project represented an
important attempt to assess the environmental consequences of population,
economic and technological dynamics under several different assumptions.

More than 30 years later, the scientific community is still debating on the
same issues. A vast literature has been formed and a good deal of knowledge
has been accumulated since the 1970s; however, the mechanisms through
which population dynamics affects the environment and the feedback re-
sponse from the environment on populations are still unclear.

The model developed by Resources for the Future is based on a set of
standard input-output equations and turns out to be a powerful tool to in-
vestigate the consequences of population growth on resource requirements.
Personal consumption expenditures provide one of the key linkages between
changes in demographic characteristics and the resource and environmental
consequences of these changes.

This paper is inspired by the economic input-output modeling proposed
by Resources for the Future and more recent developments in the field of
integrated economic input-output modeling and life cycle analysis methods
(Hendrickson et al., 2006).

The first part of the paper discusses the model and the role of demo-
graphic dynamics within the framework of the stable population model. The
second part is dedicated to the estimation of consumption patterns by age
and to the evaluation of the impact of demographic trends, in terms of com-
parative statics, on energy requirement and emission of greenhouse gases.
The third part provides a discussion of model in the context of urn processes
and path-dependence.
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2 The model

2.1 The input-output approach

The input-output approach to model the economy and its environmental
requirements dates back to the pioneering work of Leontief (1970, 1986).
In what follows we briefly give a representation of an input-output model,
as it appears in Hendrickson et al. (2006), and we introduce the role of
demography within an input-output framework.

Consider an economy with m sectors, indexed by i. The total sector
output in monetary terms, Oi, can be written as:

Oi = zi1 + zi2 + · · ·+ zim + di (1)

where zij is the (monetary) flow of goods from sector i to sector j and di is
the final demand for the good i. The model is typically rewritten in order to
represent the flows between sectors as a percentage of sectoral output. Thus,
if we write:

qij =
zij

Oj

the model can be expressed as:

Oi = qi1O1 + qi2O2 + · · ·+ qimOm + di (2)

or, equivalently:

−qi1O1 − qi2O2 − · · ·+ (1− qii)Oi − · · · − qimOm = di (3)

By letting Q be the matrix containing all the coefficients qij, o the vector
containing all the output Oi terms, and d the vector of final demands di, the
model can be written in matrix form as:

o−Qo = [I −Q]o = d (4)

This way, given the vector of final demands, and the matrix of coefficients
qij, the vector of outputs by sector can be obtained as:

o = [I −Q]−1d (5)

Hendrickson et al. (2006) make use of this model to evaluate human
environmental impact. In particular, they provide estimates for a set of
coefficients that transform economic output of each sector into ‘direct en-
vironmental impact’. They then multiply the output at each stage by the
environmental impact per dollar of output:

b = Ro = R[I −Q]−1d (6)
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b is the m × 1 vector of environmental burdens (such as toxic emissions or
electricity use) for each production sector; R is a m ×m matrix with diag-
onal elements representing the impact per dollar of output for each stage.
Alternatively, if we would like b to be a scalar representing the overall envi-
ronmental burden (in terms of carbon dioxide emissions or energy use, etc.),
we can substitute the m×m matrix R with the 1×m vector that contains
the elements on the main diagonal of R.

The role of demographic factors can be analyzed within this conceptual
framework. For instance, we can write

d = CK (7)

where

d =


d1

d2

·
·
dm



C =


5C

1
0 5C

1
10 · · 5C

1
110

· · · · ·
· · · · ·

5C
m
0 · · · 5C

m
110



K =


5K0

5K10

·
·

5K110


C is a matrix whose row i represents the profile of average consumption

by age for the output produced in sector i. nKx is a vector whose elements
represent the number of people whose age is between x and x+ n.

The model thus becomes:

b = R[I −Q]−1CK (8)

Such a model is a generalization of the well-known IPAT equation (Ehrlich
and Holdren, 1971; Commoner, 1972), that simply states that environmental
impact (I) is the product of population (P ), affluence (A), and technology
(T ):

I = P × A× T (9)

In the input-output model, b is the environmental impact. K has the role
of P , that is the demographic factor. C is the level of affluence: it depicts
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the level of consumption for the population. Such a term is ‘weighted’ by
[I −Q]−1 in order to differentiate consumption according to the sectors of the
economy to which we can impute the production of the final goods. Finally,
R is the term that is analogous to T and it expresses the ‘impact’ per unit
of production in each sector. We may think of our input-output model as
a generalization of the IPAT equation to a multi-sector economy. When we
consider an economy with only one sector, the model basically reduces to the
one depicted by the IPAT equation.

2.2 Demographic and Economic growth

In this section we try to get some insights on the effects of demographic and
economic dynamics on the environment (for instance in terms of consump-
tion of natural resources), within the framework of the input-output model
described in the previous section. We use two stylized representations of the
demographic and economic world, namely a stable population and the Solow
model of economic growth.

Since we assume that the population has a stable age structure, a good
linear approximation for the population growth rate is given by

Ṗ

P
= r ≈ ln (NRR)

af

(10)

where NRR is the net reproduction ratio and af is the mean age at child-
bearing.

The assumption that the Solow model well describes the economic growth
process implies that the GDP is modeled according to an aggregate produc-
tion function that takes the Cobb-Douglas form:

Yt = ΓtMt
αLt

1−α, 0 < α < 1 (11)

where Mt is capital input, Lt is labor input and Γt is a measure of the level
of technology or productive efficiency. The subscript t stands for time.

Technological progress grows at a rate g:

Γ̇t

Γt

= g (12)

Labor input grows at a rate r, equal to the population growth rate, since
we assume a stable age structure:

L̇t

Lt

= r ≈ ln (NRR)

af

(13)
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The Solow-model economy tends to converge over time to a steady-state
growth path such that:

Ẏt

Yt

=
g

1− α
+ r (14)

The growth rate of technology, g, together with the factor controlling for
the extent of diminishing marginal returns to capital, α, are the determinants
of the growth rate of output per worker.

If we assume that the consumption profile by age at time t, Ct, for the
goods produced in the economy, is a fraction of the GDP of the country, cYt,
then we have:

Ct = C0e
( g
1−α

+r)t (15)

The population, on the other hand, grows at a rate r:

Kt = K0e
rt (16)

If we plug equations 15 and 16 into 8, we find that the vector of environ-
mental burdens, b, grows at a rate ( g

1−α
+ 2r):

ḃt
bt

=
g

1− α
+ 2r (17)

This is true provided that the technological and economic progress do
not influence the relative prices of production or, in other words, that the
structure of the economy does not change. Another underlying assumption
is that the environmental impact per unit of production in each sector stays
constant.

These hypotheses are related to the linearity of the model and are realistic
for short term analyses or for the interpretation of early stages of environ-
mental disruption due to the introduction of a new ‘pollutant’. In the long
term nonlinearities should be taken into account.

Consider, as an example, the use of methyl bromide as an agricultural
soil fumigant for controlling a wide variety of pests, or the use of chloroflu-
orocarbons (CFCs) as air conditioners, refrigerator coolants or aerosol can
propellants. In these two situations, on the one hand, the introduction of
new technologies into the production process allowed for gains in efficiency
and fueled economic growth. On the other hand, it had negative effects on
the environment, since it contributed to the depletion of the ozone layer. As
long as the effects of the dispersion of substances like CFCs or methyl bro-
mide into the atmosphere did not have any perceivable impact on the ozone
layer, technological progress based on those chemical elements kept on fuel-
ing economic growth, on the one hand, and depleting the ozone layer, on the
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other hand. It is only when the use of these technologies became widespread,
the hole in the ozone layer increased to a considerable size (enough to have
an impact on human health), and a causal relationship between emission of
those chemical elements and disruption of the ozone layer was proven, that
technological progress in the sectors became more environmentally oriented.
Production systems started to be conceived with the aim of minimizing the
dispersion of such gases into the atmosphere, and substitutes for those sub-
stances and processes were discovered. This means that, after a certain point,
economic progress and sustainability in the sectors considered became posi-
tively related, implying that, after a certain threshold, nonlinearities play a
considerable role.

2.3 The impact of a change in mortality levels

In this section we consider the effect of changes in mortality on environ-
mental burdens: increases in life expectancy at birth bring about increases
in the number of consumers and the labor force, thus expanding economic
production and environmental burdens.

We set up the analysis within the framework of a stable population: in
such a context, the growth rate of population and labor force are affected in
the same manner by an increase of life expectancy at birth.

By plugging equation 13 into 17 we represent the growth rate of environ-
mental burdens as:

ḃt
bt
≈ g

1− α
+ 2

ln(p(af )× F × ffab)

af

(18)

where F is the total fertility rate, ffab is the fraction of females at birth
and p(af ) is the proportion of female births surviving to the mean age at
childbearing.

Lee (1994) discussed an approach to the study of the formal demogra-
phy of aging: among others, he quantified the effect of changes of fertility
and mortality on the growth rate of a stable population. if we apply that
approach to our case we see that the effect on the growth rate of carbon
dioxide emissions of a change in mortality, indexed by i, is:

∂ ḃt

bt

∂i
≈ 2

∂p(af )/∂i

p(af )× af

(19)

The impact of a change in mortality on population growth is independent
of the level of fertility: mortality decline, for instance, is associated with in-
creasing p(x). The effect on the age distribution is ambiguous, though. At the
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individual level, people live longer and thus the population gets older. How-
ever, at the population level, lower mortality means also that more women
survive to the childbearing age, thus making the population younger.

Consider a stable population with radix l0 equal to 1: the proportion of
people whose age is between x and x+ n may be written as

nKx

∞K0

= η(nLx)e
−rx =

ηn

2
(p(x) + p(x+ n))e−rx (20)

where nKx is the number of people whose age is between x and x + n in a
stable population, ∞K0 is the size of the population, η is the birth rate, nLx

is the number of person-years lived between age x and x + n, p(x) is the
probability to survive until age x, r is the intrinsic growth rate.

Let i be an index of the level of mortality: the effect on nKx/∞K0 of a
change in mortality is given by its partial derivative with respect to i

∂( nKx

∞K0
)

∂i
≈ ηn

2
[(
∂p(x)

∂i
+
∂p(x+ n)

∂i
)e−rx − x(p(x) + p(x+ n))

∂p(af )/∂i

p(af ) ∗ af

e−rx]

(21)
The age structure of the population plays an important role in our model

of environmental burdens: given an age profile of consumption, the age struc-
ture determines the level of environmental burdens.

2.4 The impact of a change in fertility levels

The analysis discussed in the previous section in the context of mortality
changes can be done also with respect to fertility (Lee, 1994). Fertility
changes affect the rate of growth of a population, r, but not the probability
of survivorship, p(x). In terms of age structure, higher fertility is associated
with increasing size of more recently born cohorts, relative to older ones, and
it thus makes the population younger. Formally:

∂r

∂F
≈ 1

F × af

(22)

Thus:
∂ ḃt

bt

∂F
≈ 2

F × af

(23)

When we look at the effect of fertility change on the age structure we find
that:

∂( nKx

∞K0
)

∂i
≈ n

2
(p(x) + p(x+ n))(

∂η

∂F
− ηx

afF
)e−rx (24)
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It is important to mention that, for this formal exercise, we do not take
into account the effect of changes in fertility on the average household size:
the presence of economies of scale at the household level may partially coun-
teract the effect of changes in fertility levels.
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3 Empirical analysis

In this section we try to estimate the effect of changing population age struc-
ture on environmental burdens. We refer our analysis to the United States:
we make estimates of consumption profiles by age and we use the model de-
veloped by Hendrickson et al. (2006) to assess the impact of demographic
changes on environmental burdens.

3.1 Data

The empirical analysis focuses on the United States: we estimate a consump-
tion profile by age by using data from the Consumer Expenditure Survey
(2003), provided by the Bureau of Labor Statistics of the U.S. Department
of Labor. The survey provides data on the amount of money spent on sev-
eral consumption goods and services by household units. Demographic and
economic variables for household units are also collected.

3.2 Methods

Given data on consumption of several items by household units, our goal is
to assign to each member of the household his/her share of consumption (in
monetary terms). We also would like to estimate the extent of economies of
scale and to separate the income effects from purely demographic effects.

Our first approach consists of modeling household consumption of goods
and services as an additive function of the consumption of its members. This
method has been used, for instance, by Mankiw and Weil (1989) to model
demand for housing.

Let cij be the consumption of good i by household j. Then,

cij =
M∑

k=1

cijk (25)

where cijk is the demand of the kth member and M is the total number of
people in the household.

The consumption of the good i for each individual is a function of age:
each age has its own consumption parameter, so that an individual demand
is given by:

cijk = β0Ind(0)k + β1Ind(1)k + · · ·+ β80Ind(80)k (26)

where:

Ind(h)k =


1 if age of individual k is equal to h

0 otherwise

11



The parameter βh is the amount of consumption demanded by a person of
age h. Combining equation 25 with 26 we obtain the equation for household
consumption:

cij = β0

∑
k

Ind(0)k + β1

∑
k

Ind(1)k + · · ·+ β80

∑
k

Ind(80)k (27)

The parameters of equation 27 can be estimated by using the least squares
technique. After appropriately smoothing the sequence of estimated param-
eters over age, we get a consumption profile by age for the good i.

To the extent that there are not economies of scale in household con-
sumption (or they are negligible) and to the extent that household formation
is fairly constant, this approach should be accurate.

If we want to separate the effect of age from the one of income, we can
use the same method applied to fraction of household expenditures, instead
of overall consumption.

In order to assess the importance of economies of scale, we can estimate
an equivalence scale that takes into account the fact that children consume
less than adults and that living arrangements with more than one person
may be more efficient.

Let ncj, naj, nej be, respectively, the number of children, adults and
elderly that live in household j, where we define children those people whose
age is between 0 and 14 years, adults those between 15 and 64 and elderly
those whose age is 65 and over; let Sia and Sie be respectively the average
consumption of good i by adults and elderly who live alone. Then we can
write an equivalence scale as:

cij = (ncjγiSia + najSia + nejSie)
θi + εj (28)

where γi is a parameter that represents the relative consumption of children,
with respect to adults, within households: γi = 0 means that only adults are
considered responsible for the consumption of the good i; γi = 1 means that
no distinction is made between adults and children in terms of consumption of
the good i. θi is a parameter that represents the extent of economies of scale
from cohabitation for the good i: θi < 1 means that cohabitation generates
economies of scale; θi > 1 means that cohabitation generates diseconomies
of scale. εj is an error term.

We can estimate the parameters γi and θi for the different consumption
goods by using the least squares technique. Given the values for Sia and Sie,
we chose the pair ( γ̂i, θ̂i) such that:

(γ̂i, θ̂i) = argminγ̂i,θ̂i

∑
j

(cij − (ncjγiSia + najSia + nejSie)
θi)

2
(29)
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A consumption profile can be then estimated from the equivalence scale.
We can assume that, within a family, the relative consumption of good i by
the elderly, with respect to the adults, is the same as the one observed for
singles, that is Sie

Sia
= ψ̂i. Then the equivalence scale becomes:

cij = (ncj γ̂iconsija + najconsija + nejψ̂iconsija)
θ̂i

(30)

where consija is the average consumption of good i by an adult in the house-
hold j. It can be retrieved as

consija =
c
(1/θ̂i)
ij

ncj γ̂i + naj + nejψ̂i

(31)

Then, for the household j, the average consumption of a child will be consijaγ̂i

and the average consumption of an old person will be consijaψ̂i. For each
household, the consumption of the good i can be divided among its members
this way. Then we can compute the average consumption by age and get a
smooth profile of consumption by age.

3.3 Confidence intervals for the parameters of the equiv-
alence scale

In this section we deal with the problem of evaluating the uncertainty for the
parameters of the equivalence scale that we introduced in equation 28. The
model is a nonlinear model with two parameters, γ and θ. Estimates of the
parameters are obtained using the method of least squares. In practice, this
involves a preliminary grid search on a set of admissible values. The results
of the grid search are then used as a starting point for the implementation
of a Gauss-Newton algorithm.

Once point estimates for the parameters are obtained, γ̂i and θ̂i, then
the problem of the evaluation of their uncertainty arises. The assessment of
uncertainty about parameter values can be made using confidence intervals.
For linear models, a well developed and elegant theory has been developed
(see, for instance, Seber, 1977). In the context of nonlinear models, linear
approximations may be used to evaluate the uncertainty of the estimates:
such local approximations may be more or less accurate depending on the
relevance of nonlinearities (see, for instance, Seber and Wild, 1989). Alter-
natively, resampling methods, such as the bootstrap (Efron and Tibshirani,
1993) are very useful for estimating the accuracy of an estimator. In this
section we follow closely the discussion of confidence intervals for nonlinear
models given in Huet et al. (2003) and we draw some elements from Seber
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and Wild (1989) and the vast literature that has been formed on resampling
techniques.

3.3.1 Asymptotic confidence intervals

In this section we descibe how to calculate confidence intervals for a parame-
ter of a nonlinear model within the framework of classical asymptotic theory.
Consider the parameter θ of the model we described in equation 28 (the same
reasoning applies to the parameter γ). θ̂i is a function of cij and when the
number of observations tends to infinity, according to results from classical
asymptotic theory, θ̂i - θ tends to 0, and σ−1

θ̂i
(θ̂i − θ) is distributed according

to a normal distribution with expectation 0 and variance 1, where σθ̂i
is the

estimated asymptotic variance of θ.
Now, consider:

T̂ =
θ̂ − θ

ŝ

where ŝ is an estimate of the standard error of θ. If the distribution of T̂
were known, say F (u) = Pr(T̂ ≤ u), then we would calculate the α/2 and
1 − α/2 percentiles of T̂ , say uα, u1−α/2, and we would obtain the (1 − α)

confidence interval for θ as [θ̂− u1−α/2ŝ; θ̂− uα/2ŝ]. We can approximate the

distribution of T̂ when the number of observations, N , is large. By analogy
to the Gaussian linear regression case, a (1 − α) confidence interval for θ is
given by:

ˆC.I.τ = [θ̂ −
√

N

N − p
t1−α/2ŝ; θ̂ +

√
N

N − p
t1−α/2ŝ] (32)

where tα is the α percentile of a Student random variable with (N−p) degrees
of freedom.

Alternatively, we can build a confidence interval with the same asymp-
totic level of ˆC.I.τ , (1 − α), that is based on the quantiles of the Gaussian
distribution. Let να be the α percentile of a random variable that is dis-
tributed according to a Gaussian distribution with mean 0 and variance 1,
then we can deduce a confidence interval for θ as:

ˆC.I.G = [θ̂ − ν1−α/2ŝ; θ̂ + ν1−α/2ŝ] (33)

ˆC.I.τ and ˆC.I.G are both symmetric around θ̂ and have the same asymp-
totic level, but ˆC.I.τ is wider than ˆC.I.G and it thus has a larger coverage
probability. It has been shown that ˆC.I.τ has a coverage probability that is
closer to (1− α) than ˆC.I.G (Huet et al., 1989).
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3.3.2 Bootstrap confidence intervals

Resampling methods, such as the bootstrap and the jackknife, are powerful
and useful techniques for estimating the accuracy of an estimator. The boot-
strap has had an enormous impact on statistical applications and it has refo-
cused some of the theory in statistics (Casella, 2003). The journal Statistical
Science dedicated a volume in 2003, “Silver anniversary of the bootstrap”, to
the discussion of the impact of the bootstrap since the seminal work of Efron
(1979). The voulme discusses the impact of bootstrap on several branches
of statistics, from sample surveys (Shao, 2003; Lahiri, 2003) to time series
(Politis, 2003) and phylogenetic trees (Holmes, 2003; Soltis et al., 2003). In
the context of regression analysis, there is a vast literature on the use of
bootstrap, jackknife and other resampling methods (e.g. Freedman, 1981;
Wu, 1986). Assesment of confidence intervals by using the bootstrap is also
widely discussed in the literature (e.g. Hall, 1986, 1986b, 1988; Efron and
Tibshirani, 1993; Seber and Wild, 1989; Huet et al., 1989; Huet et al., 2003).

Bootstrap methods represent a way to mimic the repetition of an exper-
iment: estimations are based on estimates of the parameters obtained from
artificial bootstrap samples. Recall our equivalence scale model for consump-
tion of the good i by the household j:

cij = (ncjγiSia + najSia + nejSie)
θi + εj

For every bootstrap simulation we have that:

c?ij = (ncj γ̂iSia + najSia + nejSie)
θ̂i + ε?j (34)

The errors ε?j are simulated in the following way: let ε̂j = cij−(ncjγiSia + najSia + nejSie)
θi

be the residuals, and let ε̃j = ε̂j − ε̂· be the centered residuals, where ε̂· is
the sample mean of the residuals. The set of ε?j , for the N observations, is a
random sample from the empirical distribution function based on the ε̃j. In
other words, we draw with replacement N times from ε̃j in order to obtain a

set of ε?j . The pair (γ̂?
i , θ̂

?
i ) is obtained such that:

(γ̂?
i , θ̂

?
i ) = argminγ̂?

i ,θ̂?
i

∑
j

(c?ij − (ncj γ̂iSia + najSia + nejSie)
θ̂i)

2

(35)

Consider the parameter θ (the same reasoning applies to the parameter γ).
Let B be the number of bootstrap simulations, then we will obtain B boot-
strap estimates for the parameter we are interested in: say, ˆθ?,1, ˆθ?,2 . . . , ˆθ?,B.
The relevant result is that the distribution of ˆθ?,1 , estimated by the empir-
ical distribution function of the bootstrap estimates of θ, approximates the
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distribution of θ̂. Let

T̂ ? =
θ̂? − θ̂

sθ̂?

then the difference between T̂ and T̂ ? tends to 0 when the number of ob-
servations is large. This means that confidence intervals can be computed
using the quantiles of T̂ ? instead of those of T̂ . Let bα be the α percentile
of T̂ ?, then Pr(T̂ ≤ bα) tends to α when n tends to infinity. The bootstrap
confidence interval for θ can thus be calculated as follows:

ˆC.I.B = [θ̂ − b1−α/2ŝ
?; θ̂ − bα/2ŝ

?] (36)

where ŝ? is the sample standard deviation of the bootstrap estimates for θ.

3.4 Results

3.4.1 Consumption profiles by age

Figures 1 to 8 show estimates of consumption profiles by age for several con-
sumption goods. For each good, the consumption profile has been estimated
with both the method based on the construction of equivalence scales and
the linear method that relies on the use of indicator functions. The linear
approach has been applied to fraction of household expenditure as well, in
order to get insights on the role of income effects. Table 1 gives average
consumption of several consumption goods for adults living alone and for
elderly living alone in the U.S.. Table 2 gives the least-squares estimates
for the parameters of the equivalence scales for several consumption goods,
together with their bootstrap 95% confidence intervals.

In this section we would like to focus on some interesting aspects that
emerge from the estimates. First, it is interesting to note that the two differ-
ent methods give estimates that in most cases are consistent. We observe that
individual consumption tends to increase with age until the person reaches
the adult state of life. For some goods such as electricity, natural gas or home
nursing, consumption increases with age also for the elderly. For other goods
such as gasoline, airfare and number of vehicles owned, consumption declines
with age after the adult stage of life. It is interesting to note that some of the
upward trend in consumption of goods is probably driven by levels of income
by age. For instance, the profile of consumption of food at home by age is
pretty flat after around age 50; however the proportion of income devoted
to food at home keeps on increasing after age 50. The consumption of air
flights declines with age for the elderly; however, their proportion of income
devoted to air flights remains pretty much constant.
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Home nursing (see figure 8) is a case for which the results obtained with
the linear approach are different than the ones obtained with the equivalence
scale approach: the method based on equivalence scales gives an estimate
of old age consumption that is much bigger that the one obtained from the
linear method. The reason for such a deviation is probably related to the
fact that consumption profiles obtained from equivalence scales rely on the
hypothesis that the relative proportion of adult consumption with respect to
elderly, in a household, is the same as the one observed for people who live
alone. This is a reasonable assumption for most goods, but may not be as
appropriate for the case of nursing home. As a matter of fact, there could be
big differences in the demand for nursing home depending on whether people
live alone or with other household members.

For the method based on the equivalence scale, we constrained the pa-
rameters to be positive. The idea behind the equivalence scale approach is
to allocate the observed consumption of a household to its members. On
the other hand, we do not impose constraints on the linear approach: we
can interpret the negative values that we obtain for γ̂ in some circumstances
as the negative impact on consumption of a specific good associated to the
presence of children in a household. For instance, the presence of children in
a household may have a negative impact on the number of cigarettes smoked
by adults or the amount of money spent on air flights.

3.4.2 The environmental consequences of aging

In this section we would like to discuss the role of aging and age distribution
on energy requirements and carbon dioxide emissions. Consumption profiles
represent the mediating factor between population dynamics and environ-
mental impact.

When we consider a population, it is difficult to separate out the effect of
fertility and mortality on the age structure. In order to get insights on the
effect of mortality alone, for instance, we can assume that the population is
in a stable state, so that we can observe the effect of a change in mortality,
given all other things equal.

Consider, for instance, the population of the United States and construct
its Leslie matrix. By projecting the U.S. population over a long period, say
200 years, we can get the stable age structure associated with the current
vital rates. We can then repeat the simulation by maintaining everything
equal except for the nLx schedule: we may want to know, for instance, how
the stable age distribution would change if the current level of mortality were
the one of the 1930s.

We consider the U.S. population in 2001 and in 1933: we use the female
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life tables provided by the Human Mortality Database and the fertility rates
provided by the U.S. Census Bureau to construct a Leslie matrix based on
the vital rates of 2001 and a Leslie matrix based on fertility rates of 2001
and mortality rates of 1933. The two Leslie matrices lead to the stable age
structures shown in figure 9: the two profiles show the impact of an increase
in life expectancy at birth of 16.7 years, from a starting value of 63.02 years
to a value of 79.68, given the U.S. age-specific fertility rates of 2001.

Figure 9 shows the net effect of aging on the age structure, independently
of its growth rate effect. Given our estimates of consumption profiles based
on the equivalence scale, we can do some comparative statics: the change
in the age structure is associated to a modest reduction of consumption
of gasoline (-0.7%) and tobacco products (-2%). On the other hand, this
reduction in consumption would be more than counteracted by the increase
in consumption of other energy intensive goods. Consumption of electricity
and gas would increase by about 4% and spending in air flights would increase
by about 1%. In terms of vehicles owned, we could expect an increase of the
order of 1%.

The changes that we present are related only to the age distribution of
a population and not to its size. We also would like to remind the reader
that the numbers that we obtain are the result of an exercise of comparative
statics and are not a forecast of the effect of a change in life expectancy on
consumption of certain goods. Finally, it is important to notice that we do
not take into account the fact that aging may have an impact on economic
growth and saving rates: according to classical life cycle models, aging would
reduce the overall level of savings in a population (see, for instance, Borsch-
Supan, 2005) and may thus imply a reduction of carbon emissions (Dalton
et al., 2008).

If we consider the population of the United States in 2007 and its forecast
for 2050 according to the U.S. Census Bureau, we can repeat the compara-
tive statics exercise on these figures in order to get an idea of the effects of
changing age structure and size over the next decades, all other factors held
constant. In this case both the change in the age structure and the change
in population size puts pressures on energy requirements, with the changing
population size driving the trend. The overall consumption of electricity and
natural gas would increase by about 44%; the consumption of gasoline would
increase by about 35% and that of air flights by 39%. Consumption of to-
bacco products would increase by about 33%. Now, if we look at changes in
consumption that are related only to different age distributions over the pe-
riod, holding the population size constant, then from the comparative statics
exercise we observe an increase in consumption of natural gas and electricity
of about 4%. Air flight consumption would increase by 1%. Gasoline and to-
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bacco products consumption would decrease by, respectively, about 2% and
4%.

Changes in consumption of one specific good leads to changes in levels of
production in several sectors, according to our input-output economic model.
We thus may want to explore the consequences of changing levels of consump-
tion of certain goods on the overall energy requirements and greenhouse gases
emissions for a country. In order to account for inter-sectoral flows, we use
the model discussed in Hendrickson et al. (2006), and developed at Carnegie
Mellon University [3], to estimate the impact of these changes in consumption
on environmental burdens.

If we consider electricity, for instance, we observe that an increase in con-
sumption would affect, by order of importance, the power generation and
supply sector, oil and gas extraction, stone mining and quarrying, rail trans-
portation, etc. An increase of about 4% in electricity consumption would
result, for a country like the US, in additional consumption of 4523 millions
of dollars, which means an increase of emissions of carbon dioxide of 45.3 mil-
lion metric tons. The same percentage change of natural gas consumption
would result in additional consumption of 2983 millions of dollars and that
would imply additional emissions of carbon dioxide in the order of 4.2 million
metric tons only from extraction and distribution of natural gas. The 1%
increase in air flights expenditures (or 512 millions of dollars) would trans-
late into an extra 0.86 million metric tons of carbon dioxide emissions. On
the other hand, the changing age distribution would entail a reduction of
gasoline consumption by 1% (or 919 millions of dollars): this would involve
a reduction of carbon dioxide emissions of 0.53 million metric tons from oil
extraction and distribution.

The comparative statics exercise gives us a general idea of the importance
of a demographic factor such as the age distribution in the explanation of
energy requirements and carbon dioxide emissions of an economy such as the
one of the United States. The impact of a changing age distribution is not
extremely large if we consider that the annual total level of carbon dioxide
emissions for the US is in the order of 6000 million metric tons and that large
gains in terms of life expectancy may occur through a rather long period
of time. The combined effect of changing age distribution and population
growth for a forecasted period of about 40 years is much larger, in the order
of ten times more than the age distribution by itself.
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4 A discussion of the model in the context of

urn processes

In the previous parts of the paper we discussed a static model of environmen-
tal impact based on the economic input-output approach, and we tried to get
some insights on the impact of demographic trends by means of comparative
statics exercises. In this section we would like to give some interpretation of
the equilibria that we were considering by discussing them within the context
of urn processes. First, we will give a brief introduction to urn processes and
path-dependence theory. Second, we will discuss two simple simulations of
path-dependent processes in absence and presence of feedback mechanisms.

4.1 Path-dependency and urn processes

The concept of increasing returns has a long history in economic analysis.
However, a formal analysis of positive feedbacks and early random influences
on long term economic outcomes has been developed recently, starting in
the early eighties, in a series of papers by Arthur, Kaniovski and Ermoliev
(see for instance Arthur, 1994). They interpret path dependence in terms of
non-ergodicity of a stochastic process and they build a generalization of the
Polya urn process.

The concept of urn processes is quite intuitive. Consider an urn of infi-
nite capacity with balls of two different colors, say color 1 and color 2 (the
generalization to N colors is straightforward). Let Xn be the proportion of
balls of color 1 at stage n, and let X0 be equal to 0.5: we start the process
with one ball of color 1 and one ball of color 2 in the urn. Let w be the total
number of balls contained in the urn and let f be a mapping from the unit
interval to itself. We assume that at every step a ball of color 1 is is added to
the urn with probability f(y) and a ball of color 2 is added with probability
1− f(y). We obtain X1 as the updated proportion of balls of color 1 and we
iterate the procedure to generate an urn process. Let Bn be a binary random
variable such that

Bn =


1 if the nth ball added to the urn is of color 1

0 otherwise

Given Xn, Bn is chosen independently of all other choices according to the
response function f . The number of balls of color 1 at step n + 1 may be
written as (w + n)Xn+1, which is equal to (w + n− 1)Xn + Bn+1. Thus the
proportion of balls of color 1 at step n+ 1, Xn+1 may be written recursively
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as:

Xn+1 = (1− 1

w + n
)Xn +

1

w + n
Bn+1 (37)

or

Xn+1 = Xn +
f(Xn)−Xn

w + n
+
Bn+1 − f(Xn)

w + n
(38)

Equation 38 decomposes the evolution of Xn into two components: a deter-
ministic one (Xn+ f(Xn)−Xn

w+n
) and a random one (Bn+1−f(Xn)). The random

perturbations have zero expectation, and thus E(Xn+1|Xn) = Xn+ f(Xn)−Xn

w+n
.

The expected value of Xn+1 is larger than Xn whenever f(Xn) is bigger than
Xn.

A very interesting results for applications is that the process Xn converges
to one of the fixed points of f .

4.2 A path-dependency approach to input-output mod-
eling

The path-dependecy approach based on urn processes offers an interesting
framework for the discussion of the environmental impact within the con-
text of input-output economic models. In particular, input-output economic
models are static and do not give any information about the processes that
lead to equilibria. Conversely, path dependence theory focuses on processes.

In this section we discuss a simple model in which there is not any feed-
back from the environment on the economy. We consider a three-sector econ-
omy and we initialize the flows between sectors (zij) in a 3×3 matrix and the
demand for final goods (di) in a 3× 1 vector. We also create a 3× 3 matrix
which contains coefficients that represents the degree of substitutability be-
tween sectors. The combination of sectoral flows and demand for final goods
give the overall monetary output for each sector (Oi). These data allow us
to write the flows between sectors in terms of percentages of sectoral output
(qij) and to obtain what we may call a multiplier of the demand, [I −Q]−1

(see equation 5).
At each step of the simulation we let the demand for the goods produced

in each sector evolve as a random walk with positive drift. In addition, we as-
sume that competition between sectors may lead to changes in market shares
according to a path-dependent mechanism. More precisely, we assume that
the chance that a sector wins the competition in the market at each step is
generated according to a Polya urn process. We have an urn with 3 numbered
balls (e.g. 1, 2, 3), one for every sector, and at each step of the simulation
we draw one ball and then we put it back in the urn, together with another
ball marked with the same number (that is representing the same sector).
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The idea is that sectors that have an initial advantage over others in the
early phases of economic development may take advantage of increasing re-
turns and get an even larger market share. At each step of the simulation we
update the vector of demand, that is evolving according to a random walk,
we then use the multiplier of the demand estimated at the previous step to
update the level of output produced in each sector and we transfer a market
share of 5% to the leading sector obtained from the Polya urn from a sub-
stitute sector that is chosen with probability proportional to the coefficients
of substitutability that we set for the economy. We finally assume that a
specific level of environmental burden per dollar of production is associated
to each sector: in particular, we assign a positive burden coefficient to two
sectors and one negative to the other sector. This would mean that in the
economy there could be sectors that have a greater impact on environmental
burden, expressed, for instance in terms of carbon dioxide emissions (e.g. air
transportation, fuel combustion, etc.) and other ones that have a negative
impact (e.g. solar power supply, use of hybrid cars, etc.) since the production
of goods in those sectors actually tends to reduce the overall environmental
impact of the economy.

Figures 10, 11, 12 and 13 show some realizations of the Polya urn process
that determines the choice of sectors that are leading the market at each
step of the simulation and the associated outcome in terms of environmental
burden. The interesting element that emerges from the simulations is that
very different outcomes in terms of environmental burden may be observed
depending on the configuration of the economy that is associated to the
evolution of the Polya urn process. In particular, the early competition
between sectors may lead to larger or smaller market shares for those sectors
that are less environmentally friendly and this has a large impact on long
term consequences for the environmental burden.

4.3 Introduction of feedback mechanisms

In the previous section we discussed the long term environmental conse-
quences of early competition dynamics in the economy when there is not any
feedback mechanism that regulates the competition in the economy based on
the levels of environmental burden for each sector.

In this section, we keep the same conceptual scheme that we developed in
the previous section, but we introduce a modification to the process that reg-
ulates the probability for each sector of being the leader in the competition at
a particular step of the simulation. When the overall environmental burden
is less than 3000 we assume that at each step of the simulation the proba-
bility of each sector being chosen as the leader is given by the proportion of
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balls in the Polya urn whose number is associated to the sector. When the
level of environmental burden is larger than 3000, we switch from the Polya
urn scheme to a generalized urn scheme in which the sectors with lower envi-
ronmental burden are more likely to be chosen as leaders in the competition
at each step of the simulation. For instance the probability that the sector
i is chosen as leader in the competition (and thus it is the sector which in-
creases its market share) at the next step of simulation may be assumed to be

equal to e−bi∑
I

e−bi
. Figures 14 and 15 show two realizations of the simulation

of the evolution of both the probabilities of each sector to be the leader in
the competition at each step, and the environmental burden. One interesting
aspect that emerges from these simulations is that the probabilities for each
sector to be the leader tend initially to converge to some values, according to
what we expect for the Polya urn process. However, when we reach a level
of environmental burden of 3000, we switch to a different urn process and
the proportions of balls in the urn converges to different values. In certain
instances, the change of process allows for a reduction of the overall environ-
mental burden to levels below 3000. In other cases, the initial steps in the
competition lead to a structure of the economy from which the introduction
of feedback mechanisms may not be enough to counteract the initial path
towards less environmentally friendly sectors and the environmental burden
keeps on increasing.

The examples that we provided are somewhat artificial cases: we choose
a three-sectors economy, the level of burden per sector, the level of substi-
tutability between sectors, the trend for the demand of consumption goods,
etc. Very different outcomes may be obtained depending on the choice of
key parameters of the models. The model is certainly simple and somewhat
naive; however, some important insights emerge. For instance, time plays an
extremely relevant role in these models: early changes in the structure of the
economy may lead towards more or less sustainable scenarios. In addition,
the early development of the structure of an economy may lead to situations
in which the possibility to reverse certain patterns or trends may be compro-
mised. In real societies, several responses to environmental pressure, from
technological progress to behaviors, may play relevant roles in shaping the
trend for the environmental burden of a society. The cost of late interventions
may be much bigger than the one of early interventions. In this regard, our
modeling seems consistent with the suggestion that the impact of societies
on their environments should be monitored in order to keep the economies
along paths that, even though uncertain in their outcomes, may give future
generations enough space of choice to curb trends in act.
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5 Conclusion

The paper is an attempt to discuss the role of demographic dynamics on
environmental disruption, within the framework of input-output models. It
originates from the desire of analyzing the consequences of population dy-
namics with a model that takes into account, at least partially, the complex
relationships between sectors of an economy.

We first discussed the role of some demographic dynamics from a the-
oretical viewpoint, and we then tried to apply our reasoning to real data.
One important message that emerges from the study is that demographic
dynamics have a relevant impact on resource requirements and greenhouse
gases emissions. The demographic aspect of the impact can be decomposed
into several sources. Fertility and mortality have a growth rate effect and an
age structure effect: the impact of these effects on environmental burdens is
not always clear. For instance, improvements in mortality can increase the
consumption of gasoline through the growth rate effect; at the same time,
the age structure effect tends to reduce gasoline consumption.

In the paper we based our discussion on a stylized model, the stable
population, and we tried to look at ‘limiting’ age distributions. We also look
at population projections for the U.S. from the U.S. Census Bureau and we
discuss the impact that may be related to the future population size and
distibution of the U.S.

We foresee further research within this framework to be pursued. Several
important aspects of the relationship between population and environment
have not been discussed in the paper. Household dynamics, for instance, is
likely to have a relevant role in shaping consumption patterns and should
be taken into account. Household projection or microsimulations could be
important tools in this regard.

In our approach, a consumption pattern has been estimated and then held
constant to evaluate the environmental impact associated only to changes in
size and distribution of the population. However, by doing this, we do not
take into account any cohort effect: the existence and extent of these effects
may need some investigation. In addition, consumption profiles by age may
change for reasons that are not related solely to demographic change. A
combined time series analysis of consumption profiles and demographic rates
may be relevant for the evaluation of the impact of demographic trends,
together with the associated uncertainty.

Finally, another aspect to take into account is the fact that the input-
output model is a static representation of the economy and therefore has some
limitations. Demographic changes influence the economy in a dynamic way
and not only through consumption patterns, but also through other factors
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such as saving rates. In particular, the level of savings is very relevant in
closed economies, whereas its impact may be less important in economies
more open to international flows of capital.
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Tables

Consumption good Sa Se

Electricity 482 $ 711 $
Natural Gas 355 $ 527 $

Number of vehicles owned 0.96 0.77
Gasoline 503 $ 342 $

Tobacco products 156 $ 92 $
Airfare 122 $ 153 $

Food at home 1376 $ 1708 $
Nursing home 2 $ 177 $

Table 1: Average consumption of several consumption goods for adults living
alone, Sa, and for elderly living alone, Se in the U.S.. Data source: Consumer
Expenditure Survey 2003.
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Consumption good γ̂ 95% C.I. θ̂ 95% C.I.
Electricity 0.27 (0.208; 0.325) 0.952 (0.948; 0.955)

Natural Gas 0.249 (0.146; 0.341) 0.924 (0.917; 0.93)
Number of vehicles owned 0.022 (0; 0.045) 0.85 (0.83; 0.87)

Gasoline 0.054 (0.013; 0.092) 1.004 (1.001; 1.008)
Tobacco products 0 (0; 0) 0.941 (0.933; 0.953)

Airfare 0 (0; 0) 0.948 (0.935; 0.963)
Food at home 0.347 (0.307; 0.385) 0.99 (0.988; 0.992)
Nursing home 0.945 (0; 1.89) 0.79 (0.705; 0.847)

Table 2: Estimates of the parameters of the equivalence scale, γ̂ and θ̂, to-
gether with their bootstrap 95% confidence intervals, for several consumption
goods in the U.S. Data source: Consumer Expenditure Survey 2003.
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Figures

Figure 1: Yearly average consumption profiles of electricity by age esti-
mated with different methods. Data source: Consumer Expenditure Survey
2003.
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Figure 2: Yearly average consumption profiles of gas by age estimated with
different methods. Data source: Consumer Expenditure Survey 2003.
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Figure 3: Average number of vehicles owned by age estimated with dif-
ferent methods. Data source: Consumer Expenditure Survey 2003.
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Figure 4: Yearly average consumption profiles of gasoline by age estimated
with different methods. Data source: Consumer Expenditure Survey 2003.
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Figure 5: Yearly average consumption profiles of tobacco products by
age estimated with different methods. Data source: Consumer Expenditure
Survey 2003.
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Figure 6: Yearly average consumption profiles of air flights by age estimated
with different methods. Data source: Consumer Expenditure Survey 2003.
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Figure 7: Yearly average consumption profiles of food at home by age esti-
mated with different methods. Data source: Consumer Expenditure Survey
2003.
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Figure 8: Yearly average consumption profiles of nursing at home by age
estimated with different methods. Data source: Consumer Expenditure Sur-
vey 2003.
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Figure 9: Stable age structures resulting from the projection over the long
run of populations with the fertility rates of U.S. in 2001, and the mortality
rates of the U.S. respectively in 1933 and 2001. Data source: HMD and U.S.
Census Bureau.
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Figure 10: A realization of the simulation of the evolution of environmental
burden for the path-dependency model without feedback.
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Figure 11: A realization of the simulation of the evolution of environmental
burden for the path-dependency model without feedback.
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Figure 12: A realization of the simulation of the evolution of environmental
burden for the path-dependency model without feedback.
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Figure 13: A realization of the simulation of the evolution of environmental
burden for the path-dependency model without feedback.
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Figure 14: A realization of the simulation of the evolution of environmen-
tal burden for the path-dependency model with introduction of a feedback
mechanism when the environmental burden is bigger than 3000.
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Figure 15: A realization of the simulation of the evolution of environmen-
tal burden for the path-dependency model with introduction of a feedback
mechanism when the environmental burden is bigger than 3000.
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