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ABSTRACT 
 
The frequency distribution of ages at death has been shifting to the right, but it has 
not retained exactly the same shape. The ages of deaths above the mode have 
become more compressed. The paper investigates the reasons for this 
phenomenon. One of the simple models of mortality is found to be appropriate and 
mathematically tractable. Changes in the modal age of death and in the 
compression are shown to be driven by the way in which age-specific death rates 
fall at ages 70 and over. Both can be predicted from the death rates. Results are 
illustrated by data from the English Life Tables and Interim Life Tables, and these 
are confirmed by extensive data for six countries (including England and Wales) 
using the Human Mortality Database. Amongst other things, the paper illustrates 
how it is possible for the slope of the mortality curve to steepen while people are 
living longer, thus implying that the traditional ageing rate is not a valid measure 
of senescence. 
 
 
BACKGROUND 
 
As death rates fall and people live longer, the frequency distribution of the ages at 
death shifts to the right. However, when it does this, the distribution does not 
retain exactly the same shape. Kannisto (2001) presented extensive evidence to 
show that it was not simply sliding to the right. Instead, the right hand slope was 
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being flattened vertically, so that the distribution became more compressed, as if 
(in his words) it was meeting an invisible wall. He contended that the ascending 
trajectory of mortality at high ages formed such a barrier but only in a relative 
sense, offering increasing resistance to further progress without setting any 
definite limit to it. 
 
Kannisto’s method of analysing this problem was to calculate the modal age of 
death M, the expectation of life at the mode, denoted by e(M), and the standard 
deviation (root mean square) of those individual life deviations from the mode 
which were positive. This upward standard deviation is denoted by SD(M+). He 
found that in cases where M had risen, there had generally been a fall in both e(M) 
and SD(M+). Since these are measures of dispersion, their fall showed that the 
ages at death above the mode had become more compressed. He showed that this 
compression had occurred in four countries with data back to the 19th century and 
in 13 countries between 1960 and 1995, though it should be mentioned that in all 
these cases he only analysed the data for females. 
 
Several questions arise. What are the circumstances in which compression will 
occur?  Are the falls in e(M) and SD(M+) directly related to the rises in M? Are 
they inevitable if M rises, or can they be avoided? Can compression occur 
independently of a rise in M? Is compression a permanent feature? Are there any 
implications for future projections of old age mortality and the human life span?  
  
Kannisto’s work has been quoted as a reference in at least 25 papers, but so far as 
is known, the questions in the previous paragraph have not yet been settled. In 
order to answer them, we shall find it helpful to make use of a simple working 
model of old-age mortality, which will provide a clearer understanding of how the 
“invisible wall” operates.  
 
We shall begin with the methodology, by explaining the reasons for the choice of 
the model. The main results will then be illustrated by Figures and numerical 
examples. 
 
METHODOLOGY 
  
Choice of model   
 
We begin with a simple statement of fact. In a life table, the numbers of deaths at 
age x, denoted by d(x), are calculated from the observed or assumed values of the 
death rates at each age. The values of M and e(M) and SD(M+) are then calculated 
from the d(x). If the death rates do not change, then M and e(M) and SD(M+) will 
not change. If the death rates change, then so will M and e(M) and SD(M+). 
Accordingly, all changes in the mode and the whole development of compression 
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must depend entirely on the way the death rates change. Although logically this 
must obviously be true, it is so general a statement that it does not do much to help 
us to understand how the process of compression works. What are the conditions 
in which compression will occur? 
 
In order to consider this question, it is very helpful to have a simple working 
model of old-age mortality. Even if this model does not fit the data absolutely 
precisely, it will still give us a reasonable idea of what we can expect to happen, to 
the mode and to compression, when the death rates change in certain ways. Any 
departures from the model can also be informative. 
 
The choice of a model is an important decision which needs to be described fairly 
fully. We are looking for a model which will fit the data at high ages reasonably 
well and which will be simple enough to provide the answers to our questions.  
 
There are two main contenders for this role. The first is the model originally 
proposed by Lexis, under which deaths are regarded as either normal or premature. 
The normal deaths are presumed to produce a normal distribution for the ages of 
death. Nearly all deaths above the mode can reasonably be regarded as normal 
rather than premature. Accordingly, the distribution of the ages at death above the 
mode will be the upper half of a normal distribution, with mode M and standard 
deviation SD(M+). Despite having only two parameters, this fits the data on d(x) 
at high ages very well. However, it is technically difficult to fit unless the normal 
curve is extended for a few years below the mode. This normal extension of Lexis 
has been used by Cheung and Robine (2007), and Robine, Cheung, Thatcher and 
Horiuchi (2006). However, one must not extend the normal distribution too far, 
because premature deaths will alter the shape. 
 
The second contender is a special case of the logistic model of mortality, which 
also has a long history, with a considerable literature (see Thatcher, 1999). This 
special case also has only two parameters, and it is usually written in the form 
 
                       μx  =  a ebx / (1 + a ebx )                                           (1) 
 
Here μx is the force of mortality at age x, while a and b are parameters which are 
constant in any given period. 
 
The numerator in (1) will be recognised as Gompertz’s “law of mortality”, in 
which death rates increase exponentially with age as the body deteriorates. The 
denominator then converts (1) from an exponential into a logistic function, the 
rationale for this conversion being that people have different “frailties” and that it 
is the fittest who will survive to reach the highest ages.  
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The simple logistic model is less familiar than the normal distribution used by 
Lexis, so we need to examine its properties. It has only two parameters, whereas 
the general logistic model has four. One of these (Makeham’s constant) becomes 
significant at some stage below age 70, while the other allows for alternative limits 
of mortality at extremely high ages, such as supercentenarians. For the present 
paper, however, we are not concerned with ages below 70 or with the most 
extreme high ages. Within the range to which we shall confine ourselves, the 
simple 2-parameter version seems to be adequate. 
 
The model (1) can be written in a simplified form, if we make use of the 
mathematical function known as the logit function, which is only the difference 
between two logarithms. The logit function is defined by 
 
                    logit (z)  =  ln(z/(1-z))  =  ln z  -   ln (1-z)                          (2) 
 
With this notation it is easily seen that (1) can be written as 
 
                          logit (μx )  =  a*  + bx                                                    (3) 
 
where a* = ln a. Thus if we calculate y  =  logit (μx) then the points (x, y) will lie 
on (3), which is a straight line. We shall call this the “logit line”. 
 
The fact that this very special case of the logistic model holds approximately, at 
least for modern data at high ages, was first noted by Kannisto (1992).  He had 
plotted values of logit(µx) and saw that they were on a straight line. It was also 
used independently by Himes, Preston and Condran (1994). It was one of the 
models which were fitted by Thatcher, Kannisto and Vaupel (1998) in their 
exhaustive analysis of the Kannisto-Thatcher data base, which was the largest 
assemblage of official data on old-age mortality available at the time, covering 14 
countries with reliable data.. 
 
The model (1) has a very important property, crucial to the study of compression.  
Although the death rates at individual ages depend on both of the parameters a and 
b, the compression (as measured by e(M) and SD(M+) depends only on the single 
parameter b. The reason for this can be explained mathematically as follows. It 
can be shown that when μx follows (1) then the modal age of death will occur at 
the age M which satisfies 
 
                              aebM  =  b                                                                  (4) 
 
It then follows that (1) can be written as 
 
                          μx  =  bebX / (1 + bebX )                                                 (5) 
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where X = x – M, which is the age  measured from the mode. The significance of 
this is that if we measure ages from the mode, then the whole shape of the 
distribution of both death rates and of ages at death depends only on the single 
parameter b. 
 
Of course, it is not the parameter b which determines the death rates. It is the death 
rates which determine the parameter b. Nevertheless it is a very convenient 
property that in the simple logistic model the single parameter b is enough to 
summarise all we need to know about the distribution of the ages at death 
measured from the mode at a given moment of time.  
 
 
Thus in the simple logistic model the compression of the ages at death above the 
mode, as measured by either e(M) or by SD(M+), can be calculated from b by 
using (5) to produce a life table starting from the mode. The numerical relationship 
is shown in Table 1. If we know b, then we can simply read off the values of e(M) 
and SD(M+).  The table also shows that in the simple logistic model the ratio of 
SD(M+) to e(M) falls in a very narrow band, between 1.231 and 1.235.  We recall 
that Kannisto found that the ratios he calculated from the original data for d(x) 
were hardly ever outside the range from 1.23 to 1.25. In the Lexis model, the ratio 
is always exactly 1.253, because this is the ratio of the standard deviation to the 
mean deviation in a normal distribution.  In view of this relationship of direct 
proportionality, results for e(M) will always imply results for SD(M+), and vice 
versa. 
 
A further important feature of the model is that while b determines the 
compression, as  measured by e(M) and SD(M+), the two values a and  b in 
conjunction enable us to calculate the mode M. From equation (4) it follows that  
 
                                    M  =  (ln b)/b – (ln a)/b                                       (6) 
 
Thus the compression is determined by the slope of the line (5), while the mode 
depends on the level as well as the slope. 
 
Choice between the models   
 
If we have to choose between using the normal extension of Lexis and the simple 
logistic model, the choice is fortunately made much less critical  by the fact that 
these two models produce estimates of the distribution of deaths d(x) which are 
remarkably close. 
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The conditions in which the Lexis and logistic models can produce almost the 
same pattern of d(x) above the mode have been  investigated by Horiuchi, using 
a 3-parameter version of the logistic model which includes the simple logistic 
as a special case. His first results, in Robine, Cheung, Thatcher and Horiuchi 
(2006), show that the relative rate of decrease of d(x) with respect to age, above 
the mode, is a linear function of age in the Lexis model, but a logistic function 
of age in the logistic model. However, any logistic function is almost linear in 
the neighbourhood of its point of inflection. As a consequence, there is a 
considerable range of ages above the mode where the two rates of decrease of 
d(x) are quite close. This is an important step towards understanding the 
otherwise puzzling similarity between the two models. 
 
 For the purpose of the present paper, the mathematical simplicity of (5) and (6) is 
a great advantage, so we shall adopt the simple logistic model, but fortunately the 
closeness between the models means that there is no reason to suppose that the 
Lexis model would have produced any different conclusions about compression. 
 
Practical application  
 
In order to apply the simple logistic model, we need to be able to estimate the 
parameter b. Since b is the slope of the straight line (3), it is sufficient to know the 
value of  µx at any two ages, say x1 and x2 , where x2  >  x1. The slope of the line 
between these ages is then given by  
 
                        b   =   [logit µ(x2)  -  logit  µ(x1)] / (x2  -  x1)                     (7)                  
 
However, since the central death rate m(x) at age x satisfies the approximation  
 
                                  m(x)  ≈  µ(x + ½)                                                     (8)   
                                                                     
 we can easily show that  
  
                                  b  ≈  [logit m(x2 )  -  logit m(x1) ] / (x2  -  x1 )         (9)                 
 
which can readily be calculated from life tables.  
 
There is a wide choice for the ages   x1 and x2 . In theory, in a range where the data 
fit the simple logistic model precisely, we could choose any pair of ages whatever 
and they would all produce exactly the same value for b. However, we cannot take 
x1 below 70, because the simple logistic model may no longer apply. Also, 
because observed death rates have standard errors, the standard error of b will be 
smallest if x1 and x2 are separated as widely as possible, provided that x2 is not so 
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high that the numbers of deaths are small. Most of the calculations in this paper 
take x1 as 70 and x2 as 90, so that b is estimated as the slope of the logit line 
between ages 70 and 90. Later, this slope will be compared with the slope between 
ages 80 and 90, using extensive data from six countries. To anticipate, the 
differences are generally small.  
 
By comparing the estimates of b at two different dates, we can see whether b is 
increasing, and hence whether compression is occurring. The situation is 
illustrated in the schematic Figure 5, by taking the y-axis as y = logit m(x).  If the 
logits fall more at age 1 than at age 2, then it will be seen that the slope of the line 
will necessarily increase. If, for simplicity, we take the two ages as 70 and 90, we 
have a conclusion which is worth numbering:  
 
 If logit m(x) falls faster at age 70 than at age 90, then b will increase and      
compression will occur                                                                                    (10) 
 
Of course, in the simple logistic model it is not possible for the death rates at ages 
70 and 90 to change in isolation. Death rates at all the other ages have to change 
too, if the model is to be maintained. It would be more accurate to say that 
compression will occur if the death rates at ages 70 and over follow the simple 
logistic model and change in such a way that logit m(x) falls faster at age 70 than 
at age 90.  
 
Predicting e(M), SD(M+) and M     
 
If we know the value of the parameter b, we can predict the values which we shall 
find for e(M) and SD(M+), by interpolating in Table 1.  
 
The mode M can be predicted from the equation (6). Just as we found the 
parameter b from the slope of the line (3), so we can find the parameter a from the 
intercept. On substituting in (6) and using the approximation (8) we obtain  
 
                    M  =  (ln b)/b – [logit m(x1 )]/b  +  x1 + ½                     (11)                          
 
The relationship between b and the ageing rate       
 
The parameter b is the rate at which logit m(x) increases with age, and so is the 
slope of the logit line y = logit m(x). This must not be confused with the slope of 
the mortality curve y = ln m(x). This second slope, the relative rate at which death 
rates increase with age at a given time, is known as the lifetime ageing rate (LAR). 
It is sometimes used as a measure of a hypothetical “rate of ageing”. It can be 
calculated either as an average ageing rate between two fixed ages, or as the 
ageing rate at a given fixed age x. In general, the LAR at a fixed age will depend 
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on the age and so can be written as LAR(x). In geometrical terms, LAR(x) is the 
slope of the tangent to the mortality curve 
y = ln m(x) at the age x. 
 
In the simple logistic model, at a given time, b is the same at all ages but LAR(x) 
depends on the age. The relationship between the two is 
 
                          LAR(x)  =  b(1 – m(x))                                            (12) 

This relationship follows from the fact that in the simple logistic model (dμ/dx)/μ 
= b(1 – μ). Thus at any age where we know m(x) it is possible to calculate LAR(x) 
from b and also b from LAR(x). 

We may also note several consequences of (12).  Firstly, at a given time, m(x) will 
increase with age and so (1 – m(x)) will fall. Hence LAR(x) will fall with age.  

Next, we may consider changes over time. If mortality is falling generally, then at 
a given fixed age m(x) will be falling and (1 – m(x)) will be rising. If there is no 
compression, so that b remains constant, then it follows from (12) that LAR(x) 
will be rising, at any given fixed age. With no compression, the distribution of 
ages at death will be shifting to the right without any change of shape, so that the 
LAR at a given age will be succeeded by a LAR which was previously at a 
younger age, and therefore higher. 

Next, if there is compression while mortality is falling, then both the factors on the 
right hand side of (12) will be rising at the same time. Thus LAR(x) will 
necessarily rise at any given fixed age, by more than it would have done if there 
had been no compression. 

Finally, there is the case where b and m(x) are both falling. It is then possible that 
LAR(x) may either rise or fall, depending on the sizes of the changes in b and 
m(x). 

 

The ageing rate and the length of life    

A perhaps unexpected relationship between the ageing rate and the length of life 
can also be seen from the schematic diagram (Figure 5), by taking the y-axis as    y 
= ln m(x), so that we are looking at the mortality curve. The upper straight line is 
the chord which joins the two points at age 1 and at age 2, both at time 1. The 
slope of this line is then the lifetable ageing rate (LAR) at time 1. The lower 
straight line shows the position at time 2. The schematic diagram illustrates a case 
where mortality has fallen, but has fallen more at age 1 than at age 2. The slope of 
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the lower line is then steeper than the slope of the upper line, so the mortality 
curve has steepened and the ageing rate has risen. At the same time, because 
mortality has fallen at all ages in the range, people will be living longer. This 
apparently paradoxical result presumably implies that the traditional ageing rate is 
not a valid measure of senescence. 

ILLUSTRATIONS FOR ENGLAND AND WALES  
 
The illustrations which follow use data for England and Wales, obtained from the 
English Life Tables and Interim Life Tables. They concentrate on the ages from 70 
to 95, because it is the death rates in this range which determine the modal age of 
death and also dominate the expectation of life at the mode. 
 
In the simple logistic model, the points y = logit(mx ) lie on the straight lines (3), 
so our first step is to see how close the observed points are to straight lines. 
Figures  1 and  2 accordingly plot the observed points for males and females at the 
three widely spaced dates 1906, 1971 and 2004. (The number 10 has been added 
to all the logits in order to avoid negative numbers, but this does not affect the 
shape of the lines).  It can readily be seen that the observed points look reasonably 
like straight lines. It must be remembered that we are not formally fitting straight 
lines or testing an hypothesis. We are only seeking confirmation that the observed 
points are close enough to straight lines to justify the choice of the logistic as a 
simple working model, which will help to interpret results. As we can see by eye, 
the lines do not all have the same slopes. The model then indicates that there were 
changes over time in the parameter b and hence in e(M) and SD(M+). We shall 
quantify these shortly. 
 
Figures 3 and 4 show how the modal ages of death have varied. The full lines  in 
Figure 3 show the observed values for males found from the life tables. There was 
little change between 1841 and 1906, but the mode then started to rise, rather 
falteringly. A strong rise did not start until 1971, but then it was faster than the rise 
for females, and this rise continued at a rapid pace for thirty years. The picture for 
females in Figure 4 is notably different. Again there was little change between 
1841 and 1906, but the mode then started to rise and has risen ever since. 
 
The dashed lines on Figures 3 and 4 show the predictions of the mode which are 
given by the model, found by using the equation (11). These predictions were all 
made independently of each other, using only the observed death rates (and hence 
the logits) at ages 70 and 90. The predictions are quite close to the observed 
values. In comparing them it must be remembered that the mode M found from the 
life tables is rounded down to give a whole number for the age x. This will 
account for part of the differences between the two curves, which in any case is 
generally less than 12 months. This comparison may serve to reassure us that the 
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model gives reasonable predictions, and also that the observed changes in the 
mode were reasonably close to what the model would lead us to expect, given 
what happened to the death rates at ages 70 and over. 
 
The data plotted in Figures 3 and 4 are given in Table 2. This also shows the 
estimated values of the parameter b and the resulting predictions of e(M) and 
SD(M+) which are given by the model. 
 
We now quantify the changes in compression which were indicated by the slopes 
of the lines in Figures 1 and 2, using for this purpose the data assembled in Table 
3. These include a refinement. The letter M denotes the mode estimated as the age 
which gives the highest value for d(x) in the life table. The letter M* denotes the 
mode of the continuous curve of deaths, which may be up to a maximum of 12 
months higher than M. M* is here estimated by the formula used by Kannisto 
(2001), which effectively approximates the tip of the continuous curve by the 
parabola which produces the correct observed values of d(x-1), d(x) and d(x+1). 
The expectation of life at M* is then found by interpolating between e(M) and 
e(M+1) in the life table. SD(M*+) then follows on multiplying by (say) 1.24. 
 
It will be seen from Table 3 that for males, e(M*) and SD(M*) both rose and fell. 
For females, we see only falls and this is the progression which was observed by 
Kannisto (2001). The changes were not continuous, but over the period as a whole 
the expectation of life for females at the mode M* fell by 2.35 years and the 
standard deviation fell by 2.94years. 
 
We may note that these changes in compression are consistent with the conclusion 
numbered (10) above, that compression can be predicted from the relative falls  in 
the logits at ages 70 and 90. The relevant falls can be derived from Table 3: 
 
                                                       Falls in logit m(x)                                                  
                                                       Age 70      Age 90 
Males from 1906 to 1971              0.220         0.350       
Males from 1971 to 2004              0.836         0.398                                                                 
Females from 1906 to 1971          0.753         0.405                                                             
Females from 1971to 2004           0.592         0.375         
 
The first line stands out, as the case where the fall in the logits was less at age 70 
than at age 90. When this happens, the theory predicts the opposite of 
compression: the change may not be uniform, but the standard deviation will be 
higher at the end of the period than at the beginning, as indeed happens (see Table 
3).   
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RESULTS FOR SIX COUNTRIES 
 
Logit lines for six countries   
 
The logit lines in Figures 1 and 2, and the deductions and calculations which 
follow from them, are all based on data for England and Wales, taken from the 
English Life Tables and Interim Life Tables. It is natural to wonder whether 
similar results apply in other countries. A study has been made which covers five 
other countries using data from the Human Mortality Database (HMD), together 
with England and Wales from the HMD (for comparison with the English Life 
Tables and Interim Life Tables). 
 
Logit lines (as in Figures 1 and 2) have been calculated and plotted for France 
(eight dates from 1899 to 2006), Italy (six dates from 1872 to 2003), Japan (five 
dates from 1947 to 2005), Sweden (seven dates from 1751 to 2005) and 
Switzerland (seven dates from 1876 to 2005), For England and Wales, the HMD 
data were plotted for seven dates from 1841 to 2003. For each country the logit 
lines were drawn for both males and females, making 40 lines in all. [These 
Figures will be made available on-line]. 
 
The main feature, which is immediately apparent from inspection, is that the great 
majority of the lines are practically straight. In some cases there are one or 
sometimes two wobbles, taking the form of deviations from the line in the same 
direction for a few years of age running. These wobbles do not have the 
appearance of random fluctuations. A possible explanation might be that in 
periods when death rates are falling, the falls may not happen absolutely 
simultaneously in all age groups every year. Be that as it may, the HMD logit lines 
show a few wobbles in England and Wales which are not apparent in the English 
Life Tables. This may be due to the fact that the English Life Tables (apart from 
1841) are based on more than one year and are smoothed by actuarial techniques. 
 
There are a few cases, though, where the departures from linearity are more 
severe. It is notable that these are mostly in either the first year of the series or in 
the last year. The first year cases include Italy in 1872, Sweden in 1751 and 
Switzerland in 1876. For England and Wales the 1841 line from the HMD is not 
very straight, though previous work had not found any problems for 1841 in the 
English Life Tables. However, in all these early years there may have been 
problems in collecting complete data, so deviations from straight lines are not 
surprising. 
 
At the other extreme, in several countries (with the notable exceptions of Sweden 
and Switzerland) there are several slight departures from linearity at the latest 
dates, from 2003 to 2005. These again are not surprising, because the latest 
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published figures contain an element of estimation and are usually described as 
preliminary or interim. In fact, the national statistical systems provide for these 
figures to be revised as a matter of routine, as more data become available. 
There is a wealth of material here which could be used for further study. In the 
present paper, though, we only have to decide whether to adopt the simple logistic 
as a working model, to help to explain how compression works.  
Despite the reservations about the first and last dates, and in some cases a few 
wobbles in the middle, the work on the logit lines in the six countries confirms that 
the simple logistic model is a very reasonable choice for ages 70 and over. 
 
The parameter b in the six countries    
 
In the numerical examples for England and Wales, the parameter b was found 
from the slope of the logit line joining ages 70 and 90. An obvious question is 
what the b’s look like in other countries, when fitted to data from the HMD. 
 
The ages 70 and 90 were chosen with one below the mode and the other above it, 
and with a span of 20 years in order to minimise the standard errors of  the 
estimates  of the slope. A secondary question is whether these restrictions were 
necessary. If the data follow the simple logistic model perfectly, then any pair of 
ages would do, even if both are above the mode. 
 
Table 4 provides the material to answer these questions. Columns (B), (C) and (D)  
Show the values of b given by the slopes at ages 70-80, 80-90 and 70-90. Column 
(G) shows the difference between the slopes at 80-90 and 70-90. If the logit line 
were perfectly straight, these differences would all be zero. As it is, they are 
mostly negligible. Any larger differences can only be due to the wobbles in some 
of the logit lines, as described above.  
 
The columns (E) and (F) show the implications of the b’s for compression. If b in 
column (C ) has risen since the previous line, this is denoted in column (E) by the 
letter U (for up). This means that there was compression between the two dates. If 
it has fallen, this is shown by the letter D (for down). The U’s and D’s in column 
(F) show similarly the ups and downs in column (D). If the two letters on the same 
line are the same, this means that the slopes at ages 80-90 and 70-90 have changed 
in the same direction, and so tell the same story about what was happening to 
compression. Runs of U’s downwards show continuing compression. The 
presence of the letter D shows that the rise in b has often been halted or even 
reversed, so that compression has not been a steady process. However, in all cases 
the b at the earliest date is lower than the b at the latest date, so the standard 
deviation was lower at the later date. Thus over the period as a whole there has 
been compression in all six countries, for both males and females. 
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Standard deviations in the six countries    
 
Comparisons between the observed values of SD(M+) and the values predicted by 
the model, with parameters estimated from the death rates (and hence logits) at 
ages 70 and 90, have been made for all six countries for successive 5-year periods. 
The starting dates are 1850-4 for England and Wales and for Sweden, 1900-04 for 
France, 1875-79 for Italy,1950-54 for Japan and 1880-84 for Switzerland. The 
observed values of SD(M+) are standard deviations  measured from the mode M 
taken as the age which has the highest d(x) in the life table. However, the model 
produces predicted values for SD(M*), where  M* is the mode of the continuous 
curve of deaths. Thus a certain gap between the observed and predicted values has 
to be tolerated. 
 
The results are given in a 6-page table which for reference is notionally numbered 
Table 5, though it is too large to be included in the present paper. [However, both 
the table and a 6-page set of Figures illustrating the results will be made available 
on-line]. The Figures illustrating Table 5 display the trends in the standard 
deviations, which often changed smoothly but sometimes not. The most 
exceptional case was for males in England and Wales, which as it happens has 
already been identified earlier in this paper from the English Life Tables. These 
males had a higher value of SD(M+) in 1971 than in 1906. The figures from the 
HMD trace the change in much more detail. Table 5 show that there was a long 
fall in SD(M+) from 1900-04 up to 1940-44, but this was then  followed by a 
much larger  rise up to 1970-74. After that, compression resumed. For males in 
Italy, there was a long steady fall in SD(M+) from 1900-04 up to 1960-64. Later 
there was a marked rise and so far compression has not resumed. Females in 
France showed a long steady fall up to 1980-84, which then levelled out and has 
so far remained steady. The case of the standard deviation in Japan has currently 
attracted attention, because it showed a fall up to the late 1980s and since then has 
been fairly steady. It will be seen from the other countries that levelling off is not 
new. There are precedents. 
 
The present values of the observed standard deviation SD(M+) for males are 8.2 
(years) in England and Wales, 6.9 in France, 8.1 in Italy, 7.6 in Japan, 7.7 in 
Switzerland and 7.0 in Sweden. For females they are 7.2 in England and Wales, 
6.6 in France, 6.8 in Italy, 6.3 in Japan, 5.9 in Switzerland and 6.4 in Sweden. 
 
Earlier research     
 
It may be asked how this work relates to earlier results given by Strehler and 
Mildvan (1960) and by Gavrilov and Gavrilova (1991). Strehler and Mildvan 
wrote on the kinetics of death, using postulates about the distribution of stress  
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magnitudes and the response  of organisms. Their approach was based on the 
experimentally-determined Gompertz function. One of their important predictions 
was that there would be a negative correlation between the slope and the intercept 
of the Gompertz curve, so that the slope would tend to steepen as the level of 
mortality falls. This became known as the S-M correlation.  
 
Gavrilov and Gavrilova, writing later, challenged the reliance on Gompertz. 
Instead they used the Makeham model and found that this greatly improved the fit 
and also affected the conclusions.  Although the Makeham constant, representing 
premature mortality, is only a very simple device, at least it makes some 
allowance for deaths which are not associated with age.  The correlation between 
slope and level can be affected by changes in premature mortality and is not just a 
feature of senescence. On fitting Makeham’s law to mortality data from several 
different countries,   they found that the fitted mortality curves gave the 
appearance that if they could only  be continued further they  would all be  
heading towards  a single point, the same for all the countries,  but unfortunately 
beyond the range of the observed data. The apparent tendency of the lines towards 
convergence implied a negative correlation between the slope and the intercept.  
 
Whereas the above writers were concerned with ages up to 80, the simple logistic 
model comes into its own at ages over 80, where both the Gompertz law and the 
Makeham model cease to fit. Also, as we have made clear, the logit lines in the 
simple logistic model are not the same thing as the mortality curves used in 
Gompertz and Makeham. They have similarities at lower ages but then diverge. 
Nevertheless, despite these differences, it is of interest to note that Thatcher 
(1999), fitting logit lines  to some  historical life tables back to the 17th century, 
found that these lines  had points of inflection  which were very close to each 
other, so that they almost converged to  a common point. The point of inflection is 
always at the age where µx  = 0.5, and the almost common point was between ages 
98 and 100. This suggested that there was a very long period when death rates at 
very high ages were almost static, despite all the changes at lower ages. However, 
this static period started to come to an end in the 1950s, when death rates at very 
high ages started to fall. More recently Yashin et al (2001) have found that the S-
M correlation was only stable in certain countries and that patterns could change, 
in ways which were not consistent with the S-M postulates. 
 
Perhaps we might add the rather obvious point which is illustrated in Figure 5, 
showing that the slope of a mortality curve between any two fixed ages will 
necessarily increase if ln m(x) falls more at the lower age than at the higher age. 
This is a matter of geometry rather than biology. This seems to have produced the 
negative correlation between the slope and the level in the data used by Strehler 
and Mildvan and by Gavrilov and Gavrilova. The pronounced decline in infectious 
disease mortality in the early and middle twentieth century (the epidemiologic 
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transition) lowered ln m(x) at younger adult ages more than those at older adult 
ages, making the slope steeper. 
 
 
SUMMARY AND CONCLUSIONS 
 
The aim of the paper is to study the reasons for the phenomenon reported by 
Kannisto (2001), that in many countries the expectation of life at the modal age of 
death (denoted by e(M)) and the standard deviation of the ages at death above the 
mode when measured upwards from the mode (denoted by SD(M+) have both 
been falling. This means that the ages at death which fall above the mode have 
been becoming more compressed.  
 
In order to study this problem, we need a working model of mortality which fits 
the data reasonably well at ages 70 and over. The choice of model is an important 
decision and it is considered at some length. The choice falls on a very simple 
special case of the logistic model, which is remarkably close (above the mode) to a 
model originally proposed by Lexis, but has the advantage that it is 
mathematically more tractable. We may briefly summarise its main properties.  It 
has two parameters, denoted by a and b. The parameter b on its own is sufficient to 
determine both e(M) and SD(M+), but the mode depends on both a and b. This 
shows that it is possible for the mode and the compression to change 
independently. They may often appear to be correlated, but there is no causal 
connection. 
 
In theory, if the data follow the model exactly, both the parameters can be fitted if 
we know the death rates at just two arbitrary ages in the range 70 and over. (This 
gives two equations with two unknowns. The same is also true for the Lexis 
model, above the mode). 
 
The model is initially tested, using as an example the parameters which fit the 
death rates at ages 70 and 90 taken from English Life Tables at the three widely-
spaced dates 1906, 1971 and 2004. The results are successful. Also, we already 
find an example where the mode and the standard deviation both rose at the same 
time. 
 
Using the same pair of ages, the model also shows that compression can be 
expected  if the logit function of the death rates falls more at age 70 than at age 90. 
This provides a very simple method to detect or predict compression, if we know 
the death rates. It is also relevant to Kannisto’s use of the term “invisible wall”, to 
describe the force which appears to cause compression. He contended that the 
compression he observed was due to the resistance caused by the ascending 
trajectory of mortality. In our analysis, the compression was due to the fact that the 
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death rates at very high ages did not fall faster than they did. This is a distinction 
without much of a difference. 
 
We also give the relationship between the parameter b and the lifetime ageing rate 
(LAR).We show how the ageing rate can steepen while at the same time death 
rates are falling,  so that people are living longer. This presumably means that the 
traditional ageing rate is not a valid measure of senescence. 
 
The investigation is then extended to cover six countries, using data from the 
Human Mortality Database from very early dates to the present. Some of the 
results are given in Table 4, showing the values of the parameter b fitted both by 
starting from the pair of ages 70 and 90 and for comparison by starting from the 
ages 80 and 90.The letters U in the table identify periods when compression 
occurred in the country concerned. The presence of the letter D shows periods 
when the compression was halted or temporarily reversed. Comparing the earliest 
period with the last, there was compression in all six countries for both males and 
females. 
 
Further extensive analyses for the six countries are described in the paper [and will 
be made available on-line]. They show, among many other things, that the 
standard deviation for males in England and Wales, after a very long fall, then rose 
for 30 years and has since been falling again. The standard deviation for females 
in France had a long fall but has since been level.  The standard deviation for 
males in Italy had a long fall, followed by a temporary rise, and has since been 
level. Recent figures show that a levelling may now be happening for both males 
and females in Japan. 
 
A final section describes earlier research by Strehler and Mildvan (1960) and by 
Gavrikov and Gavrilova (1991), who used the Gompertz and Makeham models. 
However, at the highest ages above the mode these models no longer fit and there 
may be other factors at work. The long-term average tendency for the logit 
function of the death rates to fall more at age 70 than at age 90 (for example) 
might perhaps reflect age-related changes in society. The growing numbers at age 
90 and expensive treatments may be calling for relatively more provision of 
resources and relatively more carers than formerly.  Some medical advances may 
be more effective at age 70 than at age 90. In order to account for a tendency 
towards compression it does not seem necessary to invoke any biological changes 
in the ageing process itself. How far compression can continue is an open 
question. 
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  TABLE 1 
  
   VALUES 

OF b, 
e(M) AND 
SD(M+) 

  
        b      e(M)    SD(M+) Ratio 
  SD(M+)/e(M) 
  
 0.09 7.34429078 9.038632 1.230702
 0.092 7.2005943 8.862959 1.230865
 0.094 7.06302674 8.694782 1.231028
 0.096 6.93120507 8.533632 1.23119
 0.098 6.80477744 8.379079 1.231352
 0.1 6.68342016 8.230728 1.231514
 0.102 6.56683494 8.088213 1.231676
 0.104 6.45474646 7.951198 1.231837
 0.106 6.34690016 7.819371 1.231998
 0.108 6.24306029 7.692444 1.232159
 0.11 6.1430083 7.57015 1.23232
 0.112 6.04654127 7.452241 1.23248
 0.114 5.95347044 7.338486 1.23264
 0.116 5.86362015 7.228669 1.2328
 0.118 5.77682663 7.122591 1.232959
 0.12 5.69293696 7.020065 1.233118
 0.122 5.61180833 6.920915 1.233277
 0.124 5.53330713 6.824979 1.233436
 0.126 5.45730819 6.732104 1.233594
 0.128 5.38369419 6.642146 1.233752
 0.13 5.31235506 6.55497 1.23391
 0.132 5.24318737 6.470449 1.234068
 0.134 5.17609382 6.388466 1.234225
 0.136 5.11098292 6.308908 1.234382
 0.138 5.04776843 6.231669 1.234539
 0.14 4.98636909 6.15665 1.234696
 0.142 4.92670812 6.083757 1.234852
 0.144 4.8687131 6.012902 1.235009
 0.146 4.81231554 5.944001 1.235164
 
 

0.148 4.75745066 5.876975 1.23532

 0.15 4.70405713 5.811748 1.235476
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  TABLE 2  
  
  DATA PLOTTED IN 

FIGS 3 AND 4 
  

FIGURE 3  
  

MALES IN ENGLAND AND WALES  
  
 MODAL AGE OF DEATH Parameter Predicted 

Year Predicted Observed        b      e(M) 
  

1841 72.999 71.5 0.094307 7.04
1906 73.351 72 0.098928 6.75
1921 74.434 74 0.096267 6.91
1931 74.7 74 0.101799 6.58
1951 75.651 75 0.107409 6.27
1961 75.304 75 0.096639 6.89
1971 75.047 74 0.09189 7.21
1981 77.177 77 0.0962 6.92
1991 79.341 80 0.099906 6.89
2001 82.389 84 0.109159 6.18
2004 83.401 83 0.113777 5.96

  
  

FIGURE 4  
  

FEMALES IN ENGLAND AND WALES  
  
 MODAL AGE OF DEATH Parameter Predicted 

Year Predicted Observed      b     e(M) 
  

1841 74.307 73 0.095701 6.95
1906 75.14 74 0.096494 6.9
1921 77.463 77 0.100735 6.64
1931 78.05 79 0.107003 6.29
1951 80.278 80 0.116308 5.85
1961 81.446 81 0.116333 5.85
1971 82.495 82 0.113851 5.96
1981 83.618 84 0.1157 5.88
1991 84.748 86 0.112585 6.02
2001 86.36 86 0.12056 5.67
2004 86.93 87 0.124741 5.5
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New Table  3
TABLE  3

DATA  FOR  1906, 1971 AND  2004

MALE S F EMALE S
   Y ear     M     M*     e(M*)    S D(M*+)       M      M*      e(M*)     S D(M*)

1906 72 72.76 7.24 8.98 74 74.02 7.48 9.28
1971 74 74.62 7.47 9.26 82 82.42 5.97 7.4
2004 83 83.97 6.12 7.59 87 87.76 5.13 6.36

MALE S F EMALE S
 Y ear       m(70) logit m70     m(90) logit m90     m(70) logit m70     m(90) logit m90

1906 0.0694 ‐2.5854 0.3505 ‐0.6169 0.0581 ‐2.786 0.2981 ‐0.8561
1971 0.5706 ‐2.805 0.2755 ‐0.9671 0.0282 ‐3.5385 0.2207 ‐1.2615
2004 0.0255 ‐3.6413 0.2033 ‐1.3658 0.0158 ‐4.131 0.163 ‐1.6363

PAR AME TE R  b

MALE S F EMALE S

1906 0.0989 0.0965
1971 0.0919 0.1139
2004 0.1138 0.1247

DE F INIT IONS  AND  ME THOD

1906 from E nglish L ife  Table for 1901‐1910
1970 from E nglish L ife  Table for 1970‐72
2004 from Interim L ife Table  for E ngland and Wales  2003‐05

S OUR C E S

M is  the  age with the highest d(x) in the life table
M* is  the estimated mode of the continuous  curve of deaths
e(M*) is  interpolated between e(M) and e(M+1)
S D(M*+) is  e(M*) multiplied by 1.24
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     TABLE 4 
ESTIMATES OF THE PARAMETER b    
   (A)     (B)    (C  )     (D)      (E)    (F)    (G)     (H) 
Date Slope at  Slope at Slope at up/down up/down   C - D  (B+C)/2 

 70-80 80-90 70-90    (C  )     (D)  
      

ENGLAND AND WALES FROM ELTs    
      

Females      
1906 0.090893 0.102097 0.096495   0.005602 0.096495
1971 0.114328 0.113374 0.113851     U      U -0.000477 0.113851
2004 0.121046 0.128174 0.12461     U      U 0.003564 0.124610

      
Males      

1906 0.088199 0.109658 0.098929      0.010729 0.098929
1971 0.088663 0.095118 0.09189     D       D 0.003228 0.091891
2004 0.114171 0.112954 0.113563     U       U -0.000609 0.113563

      
ENGLAND AND WALES FROM HMD    

      
Females      

1841 0.081627 0.092839 0.087233   0.005606 0.087233
1906 0.09513 0.096742 0.095936      U       U 0.000806 0.095936
1951 0.120182 0.111218 0.1157      U       U -0.004482 0.115700
1971 0.115476 0.114045 0.114761      U      D -0.000716 0.114761
1981 0.113908 0.113336 0.113622      D      D -0.000286 0.113622
1991 0.105245 0.12039 0.112817      U      D 0.007573 0.112818
2003 0.121174 0.129178 0.125176      U      U 0.004002 0.125176

      
Males      

1841 0.08416 0.094032 0.089096   0.004936 0.089096
1906 0.088878 0.101213 0.095045       U       U 0.006168 0.095046
1951 0.102305 0.113922 0.108114       U       U 0.005808 0.108114
1971 0.089021 0.093125 0.091073       D      D 0.002052 0.091073
1981 0.099089 0.096008 0.097549      U       U -0.001541 0.097549
1991 0.097865 0.107842 0.102853      U       U 0.004989 0.102854
2003 0.114554 0.114063 0.114308      U       U -0.000245 0.114309

      
JAPAN      

      
Females      

1947 0.10738 0.107096 0.107238   -0.000142 0.107238
1971 0.126498 0.120281 0.123389 U U -0.003109 0.123389
1981 0.135889 0.128203 0.132046 U U -0.003843 0.132046
1991 0.133621 0.145447 0.139534 U U 0.005913 0.139534
2005 0.12213 0.141526 0.131828 D D 0.009698 0.131828

      
Males      

1947 0.096421 0.102165 0.099293   0.002872 0.099293
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1971 0.107872 0.107678 0.107775 U U -0.000097 0.107775
1981 0.116679 0.114437 0.115558 U U -0.001121 0.115558
1991 0.117913 0.116366 0.117139 U U -0.000774 0.117139
2005 0.109725 0.098083 0.103904 D D -0.005821 0.103904

      
      

ITALY      
      

Females      
1872 0.122811 0.106229 0.11452   -0.008291 0.114520
1906 0.092398 0.080278 0.086338 D D -0.006060 0.086338
1951 0.122655 0.113294 0.117975 U U -0.004680 0.117975
1971 0.135414 0.115464 0.125439 U U -0.009975 0.125439
1981 0.131821 0.128573 0.130197 U U -0.001624 0.130197
1991 0.123951 0.139266 0.131609 U U 0.007658 0.131609
2003 0.129345 0.149533 0.139439 U U 0.010094 0.139439

      
Males      

1872 0.107759 0.094221 0.10099   -0.006769 0.100990
1906 0.100367 0.103561 0.101964 U U 0.001597 0.101964
1951 0.116844 0.117483 0.117164 U U 0.000319 0.117164
1971 0.103745 0.10213 0.102937 D D -0.000807 0.102937
1981 0.104089 0.105234 0.104662 U U 0.000572 0.104662
1991 0.102499 0.116686 0.109593 U U 0.007093 0.109593
2003 0.117475 0.119573 0.118524 U U 0.001049 0.118524

      
      

FRANCE      
      

Females      
1899 0.107313 0.099771 0.103542   -0.003771 0.103542
1906 0.103801 0.108153 0.105977 U U 0.002176 0.105977
1951 0.124867 0.119767 0.122317 U U -0.002550 0.122317
1971 0.126138 0.123387 0.124762 U U -0.001376 0.124762
1981 0.135173 0.130977 0.133075 U U -0.002098 0.133075
1991 0.128032 0.142547 0.13529 U U 0.007258 0.135290
2005 0.12416 0.157302 0.140731 U U 0.016571 0.140731

      
Males      

1899 0.11155 0.099967 0.105758   -0.005791 0.105758
1906 0.104302 0.125879 0.11509 U U 0.010788 0.115090
1951 0.109159 0.109941 0.10955 D D 0.000391 0.109550
1971 0.093623 0.1061 0.099861 D D 0.006239 0.099861
1981 0.108615 0.107037 0.107826 U U -0.000789 0.107826
1991 0.102727 0.118965 0.110846 U U 0.008119 0.110846
2005 0.107494 0.130949 0.119222 U U 0.011727 0.119222

      
      

Sweden      
      

Females      
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1751 0.078069 0.098516 0.088293   0.010223 0.088293
1906 0.116966 0.129758 0.123362 U U 0.006396 0.123362
1951 0.120254 0.123901 0.122078 D D 0.001823 0.122078
1971 0.123721 0.122353 0.123037 D U -0.000684 0.123037
1981 0.121867 0.133409 0.127638 U U 0.005771 0.127638
1991 0.126136 0.136997 0.131566 U U 0.005431 0.131566
2005 0.116947 0.149207 0.133077 U U 0.016130 0.133077

      
Males      

1751 0.072473 0.104483 0.088478   0.016005 0.088478
1906 0.105517 0.100553 0.103035 D U -0.002482 0.103035
1951 0.109916 0.131857 0.120887 U U 0.010970 0.120887
1971 0.106333 0.102723 0.104528 D D -0.001805 0.104528
1981 0.107285 0.105325 0.106305 U U -0.000980 0.106305
1991 0.111277 0.124089 0.117683 U U 0.006406 0.117683
2005 0.11815 0.137503 0.127826 U U 0.009677 0.127826

      
      

Switzerlan
d 

     

      
Females      

1876 0.085875 0.098566 0.092221   0.006346 0.092221
1906 0.095683 0.105135 0.100409 U U 0.004726 0.100409
1951 0.118221 0.12434 0.121281 U U 0.003059 0.121281
1971 0.127252 0.137785 0.132518 U U 0.005267 0.132518
1981 0.140368 0.130854 0.135611 U U -0.004757 0.135611
1991 0.122241 0.151027 0.136634 U U 0.014393 0.136634
2005 0.118399 0.153591 0.135995 U D 0.017596 0.135995

      
Males      

1876 0.095251 0.106461 0.100856   0.005605 0.100856
1906 0.098125 0.101114 0.09962 D D 0.001495 0.099620
1951 0.101976 0.119589 0.110782 U U 0.008807 0.110782
1971 0.107745 0.106407 0.107076 D D -0.000669 0.107076
1981 0.106121 0.105729 0.105925 D D -0.000196 0.105925
1991 0.106086 0.113549 0.109818 U U 0.003731 0.109818
2005 0.111846 0.13296 0.122403 D U 0.010557 0.122403
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FIGURE 1: MALES IN ENGLAND AND WALES
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FIGURE 2:  FEMALES IN ENGLAND AND WALES
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FIGURE 3:   MODAL AGE OF DEATH  - MALES IN ENGLAND AND WALES
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FIGURE 4 :  MODAL AGE OF DEATH  - FEMALES IN ENGLAND AND WALES
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FIGURE 5: SCHEMATIC DIAGRAM
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