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Abstract

Birthweight shows complex patterns of heterogeneity and has strong implications for in-

fant mortality and later-life demographic outcomes. Using NCHS registration data from

1968-2005, we model the joint distribution of birthweight and gestational age as a two-

component Gaussian mixture. The mixture has an intuitive interpretation: the first com-

ponent represents the majority of the population and the second component represents a

high-risk sub-population with lower mean birthweight and higher variance in both birth-

weight and gestational age. Using a Bayesian framework, we estimate the joint posterior

distribution of the mixture model via MCMC simulation. The flexibility afforded by fitting

the mixture model by the Gibbs sampler allows us to model the (binary) indicator for com-

ponent membership as a function of covariates. Our interest focuses primarily in mother’s

and father’s race, their interaction, and proxies of SES available from birth certificate infor-

mation. The model fits well, though the posterior distributions of most of the coefficients in

the hierarchical model have wide credible intervals. In particular, we find no strong evidence

that race predicts component membership. We conclude with a discussion of potentially

productive extensions to the model.
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1 Introduction

Low birthweight and young gestational age remain major risk factors for a variety of negative

health outcomes, serving overwhelmingly as the most important predictors of perinatal mortality

(Karn and Penrose 1951; Sappenfield et al. 1987; Wilcox 2001; Boardman et al. 2002; Alexander

et al. 2008). While low birthweight exerts its greatest health impact early in life, it has also

been implicated in a variety of health problems downstream in the life-cycle (Swamy et al.

2008). Low birthweight is universally recognized as a a major risk factor for negative health

outcomes, however, high birthweight has also increasingly been implicated Van Valen and Mellin

(1967); Wilcox and Russell (1983b). Gestational diabetes is a significant source of morbidity

and mortality.

Distributions of birthweight (and gestational age) are characterized by long left tails. This

feature of can be seen by comparing a kernel density estimate from an empirical birthweight

distribution with a Gaussian density with the same mean and standard deviation as the empirical

distribution, as shown in figure 1 for the California male birth cohort of 2000. The empirical

density is more peaked around its mode and has narrower shoulders in addition to the heavy left

tail. A number of population geneticists, including Karn and Penrose (1951) and Van Valen and

Mellin (1967), have argued that strong stabilizing selection is exerted on human birthweight,

showing that the probability of perinatal mortality is minimum just above the mean of the

birthweight distribution.

Following the initial suggestion of Fryer et al. (1984) that birth cohorts may be composites

of multiple heterogeneous subpopulations, Gage and co-workers (e.g., Gage and Therriault 1998;

Gage 2000) have developed a rigorous methodology for understanding heterogeneity in birth-

weight and gestational age in birth cohorts using finite mixture models. Gage modeled cohort

birthweight distributions as two-component Gaussian mixtures. These mixtures were either uni-

variate, in the case of birthweight, or multivariate, in the case of birthweight and gestational age

(Gage 2003). For example, Gage and Therriault (1998) disaggregated the total 1988 birth cohort

New York state by race and sex and fit separate two-component Gaussian mixtures to each racial
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group (white, black, Hispanic) and sex by direct maximization of the likelihood function. He fit

three different variations on the Gaussian mixture: (1) a model with fixed common variances,

(2) a model with free-to-vary variances, and (3) a model with no second Gaussian component

(i.e., a single Gaussian distribution), and used likelihood ratio tests to assess the goodness of

fit of the different models. The best-fitting model was consistently the two-component mixture

with distinct means and variances.

The consistent finding from Gage’s analysis (e.g., Gage and Therriault 1998; Gage 2000,

2003; Gage et al. 2004) is that birthweight distributions are characterized by (1) a first compo-

nent that contains the majority of births and (2) a second, smaller component that has a lower

mean and substantially higher variance than the first component. One appealing feature of the

two-component mixture is the interpretability of this result. The first component represents the

majority of births in the population (referred to as the “predominant component” in Gage and

colleagues’ work), while the second component represents the high-risk births. It is important

to note that this high-risk component, because of its high variance, includes all very low birth-

weights, most low birthweights and all very high birthweights. Of course, an implication of this

is that a fraction of births with normal birthweight and gestational age are, in fact, members of

the high-risk component.

While they do not employ an explicit mixture model, Wilcox and Russell (1983a) use the

logic of the two components to explain the paradox that while there are more female births less

than 2500 grams, males have higher perinatal mortality. Wilcox and Russell (1983a) characterize

the birthweight distribution by a Gaussian main component and a residual component for the

excess probability mass in the left tail. Births in the predominant component reflect those

of an orderly ontogenetic process, while those of the residual component are necessarily more

heterogeneous and potentially pathological. Wilcox and Russell note that most perinatal deaths

are concentrated in this residual component of the birthweight distribution. They further note

that the female main component has a lower mean, meaning that a larger proportion of small

births fall into this main component for females than for males. It is the component membership
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that defines risk, not the birthweight per se. Risk thus becomes a latent trait, inferable only

from the manifest trait of birthweight (and potentially covariates).

The mortality paradox noted by Wilcox and Russell (1983a) highlights the need to better

classify high-risk births. Gage (2003) noted that using the bivariate distribution of birthweight

and gestational age improves the ability to discern membership in the high-risk component. A

second strategy for better separating the high-risk from the predominant components is to use

covariates that are associated with high-risk birth. There are a number of covariates collected

on birth certificates and reported to NCHS that may be of use in modeling high-risk births.

Notable among these are mother and father’s race, mother’s education, and mother’s marital

status.

Race and birthweight are clearly related in complex ways. For example, African-Americans

are substantially more likely than whites to have low birthweight births, while Hispanic’s are at

moderately increased risk (Alexander et al. 2008; Boardman et al. 2002; Reichman et al. 2008).

Racial disparities in infant mortality have, if anything, increased in the United States since the

1970s. As Gage and Therriault (1998) note, however, there is no simple relationship between

birthweight, race, and perinatal mortality risk. For example, black neonates have lower weight-

specific mortality rates than whites. African-Americans hold a disproportionate share of both

low birthweight births and infant deaths, yet small African-American babies are less likely to die

than white counterparts. This phenomenon has been termed the “pediatric paradox.” Gage and

co-workers employ a logic similar to that used by Wilcox and Russell (1983a) in resolving the

pediatric paradox. Specifically, they note that it is membership in the high-risk component that

confers the mortality risk. With a lower mean for the main component, small African-American

infants are less likely to be in the high-risk component. Using a differential frailty argument

(Vaupel et al. 1979), Gage et al. (2004) suggest that a larger proportion of high-risk pregnancies

in African-American women spontaneously abort, leaving the remaining population of neonates

more robust than their size alone would predict.

Race as a causal variable is highly problematic. First, racial groupings have very little
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biological meaning (Brown and Armelagos 2001). Following Lewontin’s pioneering study, we

know that the great of human genetic variation is contained at the level of the individual, with

only a small fraction explained by the traditional racial categories (Lewontin 1972). While “race”

is not a useful biological category, it is nonetheless a major means by which people mediate their

behavior toward others. Race becomes important because people make it so. A second issue with

race is that the way that racial categories are recognized and recorded by government agencies

(e.g., the Census Bureau, National Center for Health Statistics) have changed significantly in

recent years. Birth certificates from the early part of the NCHS series of publicly available birth

microdata include classifications of infant race. More recent birth certificates do not record

the infant’s race, rather the race of the mother and the father separately. The detailed racial

classification of both mother and father allow us to investigate whether mother’s and father’s

race might have independent effects on birthweight.

In this paper we investigate the impact of mother’s race, father’s race, and the interaction

between the two on birthweight. Our analysis will concentrate on a dichotomized variable for

both mother and father’s race: white vs. non-white. We will also investigate the possible effect

of other covariates including mother’s education and marital status. We will control for known

contributers to small birthweight such as plural birth and mother’s age.

1.1 Finite Mixture Models

Pearson (1894) pioneered the use of finite mixtures of Gaussian distributions in his analysis of

Weldon’s crab data. Mixture models are a flexible and powerful tool for understanding hetero-

geneous distributions. Any non-degenerate distribution can be written as a mixture of some

other distributions. Some commonly used distributions have natural mixture interpretations.

For example, a t-distribution is a scale mixture of normals, while a negative binomial is a gamma

mixture of Poisson distributions.

A mixture model can be represented as
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f(x) =
∫

Θ
p(x|θ)g(θ)dθ,

where p(x) is the target distribution and g(θ) is the mixing distribution. In Bayesian inference,

this is known as a predictive distribution (prior or posterior depending upon what g(θ) is).

Interest frequently focuses on discrete g(θ), with support on a finite number of points and

particular interest has focused on 2-component mixtures.

Mixture models have played a large role in understanding biodemographic heterogeneity.

Wood and colleagues, for example, use a two-state hazards approach to model heterogeneity

in fertility in a natural fertility population (Wood et al. 1994). Vaupel and Carey (1993) use

a gamma mixture of Weibull distributions to model heterogeneity in medfly mortality. Jones

(in prep) has used finite mixtures of Weibull distributions to model patterns of heterogeneity in

frailty with changing forces of mortality.

In the current application, the use of mixture models is more than simply statistical con-

venience. The work of Wilcox and Russell and Gage and colleagues suggests the existence of

latent classes in birthweight, the membership of which modifies the risk of negative outcome.

Our work thus focuses on developing methods to estimate latent class membership from the

data available from NCHS.

2 Methods

2.1 Data

We use birth microdata available from the National Center for Health Statistics (NCHS) from

1968-2005 (National Center for Health Statistics 2002). We subsetted the data to look only at live

births from California. The model is fit to the joint distribution of birthweight (in kilograms) and

gestational age (in weeks) for singleton births. Gestational age estimates available from NCHS

come from three potential sources: (1) they are computed using dates of birth and last normal

menses, (2) they are imputed from last normal menses period, or (3) they represent clinical
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estimates made by the birth attendant. Covariates included in the analysis are: (1) mother’s

race re-coded as white/non-white (2) mother’s age, (3) mother’s marital status, (4) mother’s

education (in years), (5) birth order re-coded as first birth/non-first, (6) father’s race recoded as

white/non-white. NCHS data are remarkably complete. However, there are a few observations

for which missing values are present. We handled missing data via case-wise deletion.

2.2 Mixture model

We will assume that our data y = (y1, . . . , yN ) has a density that is a mixture of M components.

For biometric data such as birthweight, we will use Gaussian densities, which we denote φ(y; θ),

where θ = (µ,Σ) contains the two parameters of the multivariate normal density (the mean and

covariance matrix respectively). The probability of observing the birthweight yi is thus:

f(yi) = π1φ(yi; θ1) + π2φ(yi; θ2) + . . . + πMφ(yi|θM )

where the πi are the mixing proportions and

M∑
i=1

πi = 1.

Likelihood The likelihood for this model is thus given by,

L =
n∏

i=1

M∏
m=1

[πmφ(yi; θm)]ζim ,

where

ζim =


1 if the ith observation is in the mth component

0 otherwise
.

The ζim are unobserved indicators that assign a particular observation yi to component den-

sity j ∈ 1, . . . ,M . The binary indicator ζim suggests the possibility of modeling its probability
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as as a function of exogenous covariates.

We will model πim = Pr(ζim = 1) as a function of some set of covariates X. These covariates

are taken from the birth certificate data and include mother’s race, mother’s education, mother’s

marital status, father’s race, birth plurality, and birth order.

Component probabilities are defined by:

p(zi = j) =
f(yi|θj)∑J

k=1 f(yi|θk)

To estimate the model, we use a Gibbs sampler. Let the vector of model parameters be θ

and let θ be divided up into d sub-vectors θ = (θ1, . . . , θd). At each iteration, t sample, in turn,

each θt
j from its conditional distribution, given all the other components of θ: p(θj |θt−1

−j , y)

θt−1
−j = (θt

1, . . . , θ
t
j−1, θ

t
j+1, . . . θ

t−1
d )

Estimating mixtures of multivariate normal distributions turns out to be a non-trivial techni-

cal challenge and standard software (e.g., BUGS, JAGS) was unable to fit the model because of

the complexity of fitting a covariance matrix that varies across mixture components. However,

the fact that we are ultimately dealing Gaussian distributions means that we can take advantage

of conjugacy and the sampler is fairly straightforward to write de novo. We thus wrote the Gibbs

sampler in R. This solution is clearly not ideal for the scaling of the problem (e.g., using the full

200,000 births that occur in California in a year). As a result, we sub-sampled the full dataset

and fit the model to a sample of 5000 births.

We adopted non-informative prior distributions for all the coefficients of the hierarchical

model, using βi ∼ N (0, 100) ∀ i. Other parameters similarly received non-informative priors.

We ran the sampler with a 1000 iteration burn-in followed by a run of 5000 samples. The

model converges remarkably rapidly as revealed by the trace plots in figures 6 and 7. For more

details of the sampler, see the Appendix.

8



3 Results

Figure 2 plots a perspective plot of the bivariate density of birthweight and gestational age for

the California boys’ birth cohort in the year 2000. The surface is estimated using a 2-dimensional

kernel density smoother. Figure 3 presents the same plot for the girls’ birth cohort.

The MCMC model converged rapidly. Trace plots for the components of the covariance

matrix are presented in figure 6, while trace plots for the coefficients of the hierarchical model

are plotted in figure 7.

Consistent with the results of Gage and co-workers, we find that the two-component Gaussian

mixture fits the data well. Figure 4 shows the 95% credibility ellipse from 4000 draws from

the marginal bivariate distributions of birthweight and gestational age. The model estimated

that approximately 85% of the births in the year 2000 fell into the main component, leaving

15% in the high-risk component. The posterior mean of birthweight in the main component

was µ11 = 3.52 kg, while the posterior mean of birthweight in the high-risk component was

µ21 = 3.06 kg. The posterior mean of gestational age in the main component was µ11 = 39.20 kg,

while the posterior mean of gestational age in the high-risk component was µ21 = 37.81 kg.

The variances for the main component were σ2
1· = (0.20, 2.00) while the covariance between

birthweight and gestational age was 0.16. The variances for the high-risk component were

σ2
2· = (0.71, 20.59) while the covariance between birthweight and gestational age was 2.2. These

results are summarized in table 1.

Table 2 presents the results from the fitting of the hierarchical mixture model to the 2000

NCHS data for California boys. A notable feature of these results, in general, is that the credible

intervals on the estimates are fairly wide, indicating that there is a large degree of uncertainty.

Two coefficients (non-white mother and non-white father) had large posterior means but the 95%

interior intervals of the posterior simulations cross zero. The only coefficient with a 95% interval

that does not cross zero is mother’s education, the posterior mean of which is βmed = −0.05.
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4 Discussion

Using birth certificate data from NCHS (National Center for Health Statistics 2002), we have

employed a Bayesian hierarchical model to fit a mixture of bivariate Gaussian distributions to

the joint distribution of birthweight and gestational age for a sample of boys’ singleton births

from California in 2000. Gaussian mixture models – both univariate and bivariate – have been

employed to describe the long left-tailed distributions of birthweight quite extensively (Gage

and Therriault 1998; Gage 2000, 2003; Gage et al. 2004; Fang et al. 2007). We extend this work

by fitting a mixture of bivariate mixtures in a hierarchical fashion, thus allowing us to include

covariate information in the fitting of the mixture.

Gage et al. (2004) suggest estimating a parametric mixture of logistic regressions to look at

the joint effect of birthweight and perinatal mortality. Estimate

f((x, y); θ, β) = g(y|x;β, θ)h(x; θ)

where f(x, y) is the joint density of x and y, g(y) is the density of y which takes the form of a

logistic regression with coefficients β and h(x) is the density of x (the Gaussian mixture). y is

status (dead/alive) while x is birthweight. Gage does not include covariates such as mother’s

race, education, etc. in the logistic regression mixing distribution.

This logistic mixture of normal distributions is one way of representing a classification prob-

lem. Using Bayesian methodology, we have presented an alternative approach to understanding

the heterogeneity of birth cohorts. Our method uses information on the joint distribution of

birthweight and gestational age along with a range of covariates commonly found on birth cer-

tificates to estimate the latent structure of the heterogeneous population. The next step in this

analysis is to use the linked death data available from NCHS to investigate the predictive power

of membership in the latent high-risk component on epinatal mortality.

Bayesian estimation of a mixture of multivariate normal distributions carries some technical

challenges. In particular, fitting a covariance matrix that varies across mixture components
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appears to be a task currently beyond the capabilities of BUGS. Nonetheless, the sampler was

easily constructed in R and its performance was surprisingly good. The analysis in this paper

uses a subsample of California births from the year 2000. The full dataset for California contains

over 230,000 births per sex. We are currently exploring the scalability of our sampler to the full

problem.

Only one of the seven covariates had a coefficient with a 95% credible interval that did not

cross zero. It is possible that a larger sample of births would allow more precise estimation

of the hierarchical model’s parameters. Furthermore, it is also possible that a two component

mixture of bivariate normals is not the best model for the joint distribution of birthweight and

gestational age. One possibility is that a three-component mixture might fit better, a possibility

we are exploring.

An interesting feature discernible from figure 4 is the apparent differences in the covariance

structure of the two components. The high-risk component shows a stronger correlation be-

tween birthweight and gestational age than the normal component. While this may partially

be an artifact of the much greater variance in birthweight in the high-risk component, posterior

simulations from the covariance matrices suggest that the differences in correlations are real.

Figure 5 shows 5000 posterior draws from the correlation matrix for (a) the high-risk component,

(b) the normal component, and (c) their difference.

The interpretation of this result seem fairly straightforward. Conditional on a “normal”

pregnancy going full term, there is modest natural variation in birthweight. Normal births thus

show a small correlation between gestational age and birthweight in large measure because of

the restricted variation in gestational age among normal births. On the other hand, a live

birth following a disturbed pregnancy can occur at a wide range of gestational ages. Longer

periods in utero allow for more growth (indeed potentially pathological growth in the case of

gestational diabetes), leading to a strong correlation between gestational age and birthweight in

the high-risk component.

Gage and colleagues have fit mixture models to different racial groups separately. In our
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analysis, race enters as a covariate in the hierarchical model as both mother’s and father’s

racial identity. While the distributions of the coefficients of both covariates had relatively large

posterior means, the 95% credible regions of both coefficients crossed zero, raising the question

of how important race is for component membership.

We have chosen to focus our discussion of the two-component mixture of bivariate Gaussian

distributions. We also performed the analysis for a two-component univariate Gaussian distri-

butions, focusing solely on birthweight. For this model, race, mother’s education, and mother’s

marital status all had much stronger effects in predicting component membership. This raises

the possibility that modeling the joint distribution of birthweight and gestational age is the

wrong approach to the problem. Clearly, further exploration of this problem is necessary.

A natural question that arises in an analysis such as the one we have presented is: are the

results simply a statistical convenience or do our results represent an underlying biodemographic

reality? Both Wilcox and Russell (1983a) and Gage et al. (2004) present compelling evidence

that the mixture model reflects underlying biology. Gage et al. (2004) suggest that the mixture

interpretation explains the so-called “pediatric paradox,” namely, that low birthweight black

babies have lower epinatal mortality rates than low birthweight white babies despite the higher

overall mortality rate of black neonates. The explanation that Gage and colleagues give for this

apparent paradox is that African American infants are more likely to be born into the high-risk

component, where they have lower mortality, but have higher mortality in the non-compromised

component (where a larger number of births of both groups occur). Without the mixture model,

the heterogeneity explanation does not work.

Future work on this project includes: (1) scaling of the problem to the full sample of births

for both sexes, (2) inclusion of the full range of dates 1968-2005. In addition to these tasks, we

will use the linked infant death data available from NCHS to investigate component membership

and it’s role in infant mortality. Finally, geocoding is available for California births, allowing us

to link births to rich census information, in particular, socioeconomic status of the mother and

father.
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Figure 1: Comparison of the kernel density estimate for the California male birth cohort of 2000
to a Gaussian distribution with the same mean and standard deviation.

16



Birthweight (kg)

G
es

ta
tio

n 
(w

ee
ks

)
D

ensity

California Boys (2000)

Figure 2: Perspective plot of the bivariate density of birthweight and gestational age for the
California boys’ birth cohort in the year 2000. The perspective plot is angled to emphasize the
lower tail of the bivariate distribution.
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Figure 3: Perspective plot of the bivariate density of birthweight and gestational age for the
California girls’ birth cohort in the year 2000. The perspective plot is angled to emphasize the
lower tail of the bivariate distribution.
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Figure 4: 95% credible intervals implied by covariance matrix and posterior means for two
components based on 4000 draws from the posterior distributions. The predominant component
is drawn in blue while the high-risk component is drawn in red. Draws of posterior means are
given in the blue and red dots at the center of the ellipses.
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Figure 6: Trace plots for the components of the covariance matrix, Σ.
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Figure 7: Trace plots for the coefficients β in the hierarchical model.
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Parameter Posterior Mean Standard Deviation 2.5% 97.5%
µ Component 1, Birth Weight 3.06 0.04 2.96 3.14
µ Component 2, Birth Weight 3.52 0.01 3.51 3.54
µ Component 1, Gestational Age 37.81 0.19 37.43 38.18
µ Component 2, Gestational Age 39.20 0.03 39.15 39.26
σ1,1, Component 1 0.71 0.05 0.62 0.81
σ2,1, Component 1 2.20 0.19 1.86 2.60
σ1,2, Component 1 2.20 0.19 1.86 2.60
σ2,2, Component 1 20.59 1.39 18.15 23.54
σ1,1, Component 2 0.20 0.01 0.19 0.21
σ2,1, Component 2 0.16 0.01 0.14 0.19
σ1,2, Component 2 0.16 0.01 0.14 0.19
σ2,2, Component 2 2.00 0.09 1.84 2.18
Proportion in Component 1 0.18 0.01 0.16 0.21
Proportion in Component 2 0.82 0.01 0.79 0.84

Table 1: Posterior summaries for the mixture model.
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Coefficient Posterior Mean Standard Deviation 2.5% 97.5%
Intercept 0.68 1.00 −1.29 2.68
Mother’s Age −0.13 0.07 −0.27 0.01
Mother’s Age Squared 0.0021 0.0012 −0.0003 0.0045
Non-White Mother 0.10 0.19 −0.27 0.46
Mother’s Education −0.05 0.02 −0.08 −0.01
Mother Unmarried 0.20 0.14 −0.07 0.48
Birth Order 0.20 0.13 −0.05 0.45
Non-White Father 0.19 0.18 −0.16 0.54

Table 2: Posterior summaries for the coefficients for the hierarchical model.

Appendix: The MCMC Sampler

Model. Each observation yi, i ∈ {1, . . . , n} in component j ∈ {1, . . . , J} generates the likelihood

contribution

p(yi|ζij = 1, µj ,Σj) = φM (yi|µj ,Σj)

where φM is the multivariate (M -variate) normal density, µj ∈ RM is the mean of component j,

and Σj , the M -by-M covariance matrix for y in component j. Note that we work with M = 2

and J = 2. Conditional on the indicators ζij , inference for µj and Σj is trivial, amounting to

no more than conventional Bayesian inference for a multivariate normal mean and variance.

We use a hierarchical model for the unobserved component indicators ζ = {ζij}. That is,

with j ∈ {1, 2} we have

πi = Pr(ζi1 = 1|xi) = F (xiβ). (1)

It is helpful to treat the ζ as additional parameters in the model, meaning that the full set

of parameters is Θ = {µ1, µ2,Σ1,Σ2, ζ, β}. Note that conditional on ζ, the birth weight and

gestational age data y are independent of the predictors of component membership X, and the

likelihood for this hierarchical model factors as

p(y|Θ) = p(y|ζ, µ1, µ2,Σ1,Σ2)p(ζ|X, β),
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with the second term in the likelihood function given by equation 1. In a sense ζ acts like a set

of auxiliary variables that facilitates computation of the likelihood function for y, although here

we will treat them as parameters.

We use vague normal priors for µ1 and µ2 and an improper uniform prior for both Σ1 and

Σ2. The hierarchical part of the model, equation 1, constitutes a prior for the ζij . A prior over

β completes the specification of the model: here we use a vague normal prior, with mean vector

0 and identity covariance matrix equal to 102 times an identity matrix. In summary then, our

model is

yi|ζij = 1 ∼ N(µj ,Σj) (2a)

µj ∼ N(ηj ,Σµj ) (2b)

p(Σj) ∝ 1 (2c)

ζi1 ∼ Bernoulli(πi) (2d)

πi = F (xiβ) (2e)

β ∼ N(b0,B0), (2f)

and we set ηj = 0, Σµj = 102 · I, b0 = 0 and B0 = 102 · I, j = 1, 2.

Identification (invariance to label switching). To uniquely label the components of the mix-

tures, we also impose the constraint that that each element of µ2 is greater than the correspond-

ing element of µ1. This constraint uniquely labels component “1” as the low-birth-weight/low-

gestational-age component in these data. We impose this constraint via simple rejection sam-

pling in the Gibbs sampling step for both µ2 and µ1. We initialize the sampler in a region of

the parameter where this constraint is satisfied.

Posterior density. By Bayes Rule, and given the model structure described above, the

posterior density for Θ is

p(Θ|y,X) ∝ p(y|ζ, µ1, µ2,Σ1,Σ2)p(µ1)p(µ2)p(Σ1)p(Σ2) p(ζ|X, β)p(β). (3)
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We sample from this density using a Gibbs sampler, iteratively sampling from the following

conditional densities:

1. p(µj |y, ζ,Σj) = p(µj)p(y|ζ, µj ,Σj). Since p(µj) is the multivariate normal density in 2b

and p(y|ζ, µj ,Σj) is the normal density in 2a, then we have the familiar precision-matrix

weighted average of prior mean and likelihood

µj |y, ζ,Σj ∼ N
(
µ̃j , Σ̃µj

)
where

µ̃j = Σ̃−1
µj

(Σ−1
µj

ηj + V−1
j ȳj),

Σ̃µj =
(
Σ−1

µj
+ V−1

j

)−1

ȳj = ν−1
j

n∑
i=1

yi · ζij

Vj =
n∑

i=1

(yi − ȳj)′ζij/νj(yi − ȳj)

νj =
n∑

i=1

ζij

i.e., ȳj is the mean and Vj is the maximum likelihood estimate of the covariance matrix

of y for those observations where ζij = 1, respectively.

2. p(Σj |y, µj , ζ) = p(Σj)p(y|ζ, µj ,Σj) is the product of an improper, uniform prior for Σj

and the multivariate normal density over y in component j. The resulting density for Σj

is an inverse-Wishart density, with scale matrix parameter

Sj =
n∑

i=1

(yi − µj)′ζij(yi − µj)

and degrees of freedom parameter νj =
∑n

i=1 ζij .

3. p(ζij |yi, µ1, µ2,Σ1,Σ2,xi, β). Recall that ζij ∈ {0, 1}, and so this conditional distribution

is a probability mass function. Also, in our case, we consider only J = 2 components.

Thus, let πi be the conditional probability that ζi1 = 1. By the discrete version of Bayes
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Rule, we have

πi =
Pr(ζij = 1) p(yi|ζij = 1, µ1,Σ1)∑J

k=1 Pr(ζik = 1) p(yi|ζik = 1, µk,Σk)

=
F (xiβ) φ(yi;µ1,Σ1)

F (xiβ) φ(yi;µ1,Σ1) + (1− F (xiβ))φ(yi;µ2,Σ2)

where the term F (xiβ) comes from the hierarchical part of our model in 1. We then

sample ζi1 as the outcome of a Bernoulli trial with probability πi. In the case of J = 2

components we simply set ζi2 = 1− ζi1.

4. p(β|X, ζ) = p(β)p(ζ|X, β). The second term is the logistic regression likelihood,

p(ζ|X, β) =
n∏

i=1

F (xiβ)ζi1 [1− F (xiβ)]ζi2 (4)

while p(β) ≡ N(b0,B0) is the vague multivariate normal prior in 2f. In a large sample

like ours with n = 5, 000 observations, the resulting density is well approximated by a

multivariate normal density centered on the precision-matrix weighted average of the MLEs

from the logistic regression of ζ1 on X and the prior mean b0 = 0: i.e., approximately,

β|X, ζ ∼ N(b̃, B̃)

where

b̃ = (V̂−1
β + B−1

0 )−1(V̂−1
β β̂ + B−1

0 b0),

B̃ = (V̂−1
β + B−1

0 )−1

and where β̂ maximizes the likelihood in equation 4 and V̂β is the inverse of the Fisher

information for β̂.

Sampling from each of these conditional distributions constitutes a single iteration of the Gibbs

sampler.
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In this data set, the two components of the mixture are quickly resolved by the sampler,

and the Gibbs sampler appears to rapidly converge on the joint posterior density in equation 3.

We run the sampler for five thousand iterations, discarding the first 10% of the run as burn-in

from arbitrary initial values, although it does appear that the sampler has settled on the joint

posterior density well before then.
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