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ABSTRACT

Population projection models are valuable tools for demographers and public policy makers

alike. A particular example is the model developed by Heuveline (2003) which captures some

of the links between population growth and the spread of HIV/AIDS. This model requires

relatively few inputs and can provide projections of HIV prevalence for populations for which

reliable data are limited. We reproduce Heuveline’s work, but in a Bayesian context. More

specifically, we use Bayesian melding to obtain measures of uncertainty around both the

model inputs and outputs in the form of probability distributions. This approach provides

useful information to policy makers concerning issues with planning and resource allocation.

1Samuel J. Clark, Department of Sociology, University of Washington, 202 Savery Hall,

Box 353340, Seattle, WA 98195-3340; E-mail: samclark@u.washington.edu. Jason Thomas,

Department of Sociology, University of Washington; E-mail: method@u.washington.edu.

This research was supported by the Center for Statistics and the Social Sciences (CSSS)

at the University of Washington. The authors are grateful to Patrick Heuveline for his

correspondence and for making his work available. We are also indebted to Leontine Alkema

for sharing her code for implementing Bayesian melding for the Estimation and Projection

Package.

1



INTRODUCTION

Many governments and policy organizations rely on population projections to help them

adequately provide services for the population. For some populations, generating realis-

tic projections is seriously complicated by the lack of data and the complex dynamics of

HIV/AIDS epidemics experienced by the population. An important step in confronting

these difficulties has been made by Heuveline (2003), who developed a model which captures

several of the dependencies inherent in the relationship between population growth and the

spread of HIV/AIDS. Heuveline has also published default values for most of the model

parameters, which are estimated using data from several East African countries. This allows

age- and sex-specific projections, by HIV infections status, to be made from a small amount

of data.

The purposes for this article are twofold; the first of which is to facilitate the use of

Heuveline’s model. The model, referred to here as CCMPP, is an extension of the cohort

component method for making age- and sex-specific population projections (for an introduc-

tion to the cohort component method see Preston et al., 2001; Keyfitz and Caswell, 2005).

Heuveline has extended the basic version of the cohort component method by expanding the

state space through which individuals can make transitions. In total, there are five states:

(1) HIV–, (2) having been infected with HIV for up to four years (3) HIV+ for five to nine

years, (4) HIV+ for 10-5 years, and (5) HIV+ for more than 15 years. As the population is

projected through time, the transitions that individuals make are determined by aging, (age-

and sex-specific) HIV incidence rates, and being born with or without HIV. This last process

is the feature of CCMPP which captures two of the connections between the dynamics of
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populations and HIV/AIDS epidemics. More specifically, CCMPP models the vertical trans-

mission of HIV from mother to child, as well as the negative relationship between fertility

and duration with HIV. Sexual activity is expected to be higher among young women (i.e.

those ages 15-9) who are HIV+, which consequently increases fertility. However, as the time

since infection increases, fecundability – and thus fertility – both decrease.

Although CCMPP requires over 20 inputs, Heuveline (2003) provides default values

for most of the parameters, which are applicable to populations located in East Africa.

Thus, only two model inputs are needed, i.e. the year in which the HIV epidemic began

and an estimate of HIV prevalence, to produce age- and sex-specific projections of HIV

prevalence. The ability of the model to produce such valuable outputs (generated from

HIV and population dynamics) is the justification for why we wish to facilitate the use of

CCMPP. To help achieve this objective, CCMPP is presented here using matrix notation,

which provides the guidelines for an efficient implementation of the model using any standard

programming language. Furthermore, we are developing a package for the R programming

language R Development Core Team (2006) which provides several functions for running

CCMPP (for a given set of inputs) and analyzing the outputs. This package will be made

publicly available from the authors upon completion.

The second purpose for this paper is to provide alternative estimates of uncertainty

around the model’s inputs and outputs. Heuveline (2003) reports confidence intervals for the

CCMPP inputs, which can be used to generate (age-specific) probabilistic projections of HIV

prevalence. We propose a different approach, namely Bayesian melding, which is specifically

designed for deterministic models (Raftery et al., 1995; Poole and Raftery, 2000). Bayesian
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melding provides a way to estimate various sources of uncertainty around the model inputs

and outputs. This technique is applied to CCMPP to obtain (posterior) distributions for

the parameter inputs, as well as probabilistic projections of HIV prevalence . These results

are compared to those reported by (Heuveline, 2003) obtained from maximum likelihood

estimation.

The paper is organized as follows. First, we describe CCMPP and present the model

using matrix notation. This is followed by a discussion of the parameter estimation via

maximum likelihood. Third, we review Bayesian melding and the application to CCMPP.

Then we present the results and conclude with a discussion of possible extensions for CCMPP

and of ways in which Bayesian methods can enhance the use of CCMPP even further.

MODEL

Single-State CCMPP

CCMPP is a deterministic model for discrete time that produces age- and sex-specific pro-

jections. Age groups are advanced over the projection interval1 by applying age-specific

survivorship ratios. CCMPP can also include migration, but our presentation of the model

will only describe a closed population. For all age groups, excluding the youngest and oldest,

the projection can be written as

1The projection interval is typically set equal to the length of the age groups, excluding

the oldest group which is open-ended.
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na+1,t+1 = sa,t na,t (1)

where na,t is the number of women in age group a at time t, and sa,t is the survivorship ratio,

or the proportion of women in age group a that survives to age group a + 1 from time t to

t + 1. The projection for the oldest age group, which is open-ended, is calculated as

na′,t+1 = sa′−1,t na′−1,t + sa′,t na′,t (2)

where a′ is the oldest age group. The youngest age group is projected forward by applying

the appropriate survival ratio to the total number of female births. The latter quantity is

calculated by applying the age-specific fertility rate to the average number of women alive

at the beginning and end of the projection interval2 and summing over the age groups. This

is written as

n1,t+1 =
β∑

a = α

s0,t
1

1 + SRB
fa,t

(1 + sa,t)

2
na,t (3)

where fa,t is the fertility rate for women in age group a at time t and SRB is the ratio of

male to female births, or the sex ratio at birth,3 and the lower and upper bounds of the

childbearing age range are α and β , respectively.

The preceding equations can be efficiently represented using matrix notation. To

illustrate, consider a population with three age groups. We can write the CCMPP as

2This quantity is used to approximate the number of person-years lived by women during

the projection interval.
3The number of male births is calculated by multiplying the total number of births by

SRB
1+SRB

.
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nt+1 = Atnt, where nt is a 3 × 1 column vector containing the counts in each age group at

time t, and At is the so-called Leslie matrix. For this population, the Leslie matrix is

At =



b1,t b2,t b3,t

s1,t 0 0

0 s2,t s3,t


(4)

where

ba,t = s0,t
1

1 + SRB
fa,t

(1 + sa,t)

2
. (5)

Note that when a < α or a > β we have fa,t = 0, and thus ba,t = 0.

Multi-State CCMPP

Heuveline (2003) has developed CCMPP for a population with 5 different groups, distin-

guished by HIV status. There are four HIV duration groups (i.e. 0-4 years, 5-9 years, 10-14

years, and 15+ years), as well as an HIV– group. In this section we present Heuveline’s

multi-state CCMPP for a population with 17 age groups (0-4, 5-9, ..., 80+) in each of the 5

HIV groups. The model is introduced with a series of equations representing the transition

from one group/time period to the next. This is followed by a presentation of the model in

the form of a Leslie matrix.

Begin by dividing the population into age groups, where a = 1, 2, . . . , 17 correspond

to age groups 0 − 4, 5 − 9, . . . , 80+. Denote membership in the HIV duration groups by d,

with d = 1, 2, . . . , 5 corresponding to HIV–, HIV+ for 0-4 years, ..., HIV+ for more than 15
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years. The time period is indexed by t, but note that the length between t and t+1 is equal

to the width of a standard age interval, i.e. 5 years. Let na,d,t be the number of women in

age group a and duration group d at time t. For 17 > a > 1, we have

na+1,1,t+1 = na,1,t sa,1,t (1 − ia) (6)

na+1,2,t+1 = na,1,t sa,1,t ia sa,2,t (7)

na+1,d,t+1 = na,d−1,t sa,1,t sa,d,t, for d > 2 (8)

where sa,d,t is the survivorship ratio for age group a and duration group d at time t. Note

that for 5 > d > 2 the survivorship ratio determines the transition from one age group to

the next, as well as from one duration group to the next. Each HIV+ group is exposed to

the same survival rate as the HIV– group, as well as an additional force of mortality specific

to d. The parameter ia,t is the fraction of women in age group a who become infected with

HIV over the projection interval. To allow for the heterogeneity of HIV epidemics across

populations, this parameter is decomposed as

ia,t = 1 − exp {−Γt−t0 H ja} (9)

where Γt−t0 is the parametric curve used to model the trend in the HIV epidemic, which

depends on the time since the epidemic began (t0). The parameter H is a population-

specific scale parameter which captures the size of the epidemic. The parameter ja is the

age- and sex-specific scaling factor of incidence relative to women aged 20-25, for whom the

parameter is constrained to be one in order for the model to be identifiable (i.e. j5 = 1).
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These equations are slightly different for the youngest and oldest age groups. The oldest

(open-ended) age group is incremented by 2 sources: those aged 75-9 and 80+ in the previous

time period. This gives us (for a = 17)

n17,1,t+1 = n16,1,t s16,1,t (1 − i16)

+ n17,1,t s17,1,t (1 − i17), (10)

n17,2,t+1 = n16,1,t s16,1,t i16 s16,2,t

+ n17,1,t s17,1,t i17 s17,2,t, (11)

n17,d,t+1 = n16,d−1,t s16,1,t s16,d,t

+ n17,d−1,t s17,1,t s17,d,t for 2 < d < 5, (12)

n17,5,t+1 = n16,4,t s16,1,t s16,5,t + n17,4,t s17,1,t s17,5,t

+ n16,5,t s16,1,t s16,5,t + n17,5,t s17,1,t s17,5,t. (13)

As seen with the single-state CCMPP, the first age group is projected forward by

applying age-specific fertility rates to the average number of women (at the beginning and

end of the projection interval) who are in the corresponding age and HIV duration groups.

Heuveline’s model also has three additional parameters included in the fertility calculations.

These parameters model a few of the connections between HIV and population dynamics.

First, consider the number of HIV– births

n1,1,t+1 = s0,1,t
1

1 + SRB
×
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 β∑
a = α

fa,1,t

na,1,t + p−a−1,1,tna−1,1,t

2
+

5∑
d =2

β∑
a = α

f−
a,d,t

na,d,t + pa−1,d−1,tna−1,d−1,t

2

 . (14)

In the equation above, the fa,1,t’s are simply the age-specific fertility rates for HIV– women,

and the lower and upper bounds of the childbearing age range are α and β. Fertility among

HIV+ women introduces the following parameters

f−
a,d,t = fa,1,t ea gd (1 − vd) (15)

for d > 1. The superscript in f−
a,d,t designates births to children who are HIV– (i.e. d = 1).

The parameter vd is the probability that an HIV+ woman in duration group d will give

birth to an HIV+ child, or the vertical transmission rate. The parameter ea captures the

higher level of sexual activity and resulting fertility among HIV+ women aged 15-9 who

have been infected for 0-4 years (d = 2). In other words, we expect ea=4 > 1, and ea 6==4 are

constrained to be one. The parameter gd represents the fertility impairment for women in

duration group d which is expected to become stronger as the time since infection increases.

The corresponding equations for children who are HIV+ are

n1,2,t+1 = s0,1,t
1

1 + SRB

5∑
d =2

β∑
a = α

f+
a,d,t

na,d,t + pa−1,d−1,t na−1,d−1,t

2
, (16)

f+
a,d,t = fa,1,t ea gd vd. (17)

Finally, we define the factors used to approximate the average number of women at the

beginning and end of the period, p−a,1,t and pa,d,t. These parameters can be written as

p−a,1,t = sa,1,t (1 − ia) (18)
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pa,1,t = sa,1,t ia sa,2,t (19)

pa,d,t = sa,1,t sa,d,t, for d > 1. (20)

These equations for the multi-state CCMPP can conveniently be expressed in matrix

notation. For a population with 17 age groups and 5 HIV duration groups, the population

at time t is represented by a (85 × 1) column vector

nt =



n1,1,t

n2,1,t

...

n17,1,t

...

n1,4,t

n2,4,t

...

n17,4,t


The corresponding Leslie matrix is
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At =



B1,1 B1,2 B1,3 B1,4 B1,5

B2,1 B2,2 B2,3 B2,4 B2,5

0 B3,2 0 0 0

0 0 B4,3 0 0

0 0 0 B5,4 B5,5



(21)

where Bi,j is a (17 × 17) submatrix which models how group j, at time t, contributes to

group i, at time t + 1. Note that B3,1 is a zero matrix since women who are HIV– at time

t cannot give birth to children who have been HIV positive for ten years by t + 1 (i.e. five

years into the future). Similar reasoning applies for the other zero matrices.

The calculations involving B1,j produce the projection for the number of HIV– births

(i.e. n1,1,t+1) contributed by duration group j. Similarly, B2,j projects the number of HIV

positive births contributed by duration group j > 2. B1,1 and B2,1 are a little different in

that they project each age group to the next oldest age group, and from one HIV duration

group to the next highest. Let us first consider B1,1

B1,1 =



b−1,1,t b−2,1,t · · · b−17,1,t

p−1,1,t 0 · · · 0

0 p−2,1,t
. . .

...

0 0
. . . 0

...
...

. . . . . . 0 0

0 0 · · · 0 p−16,1,t p−17,1,t



.

Recall that the number in the first age group at time t + 1 is equal to the number of births

summed across the fecund age groups, Let b−a,d,t be the factor needed to calculate the number

of HIV– births to mothers in age group a, at time t, and in duration group d
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b−a,1,t = s0,1,t
1

1 + SRB
f−

a,1,t

1 + p−a−1,1,t
na−1,1,t

na,1,t

2
. (22)

In our application of the multi-state CCMPP fertility only occurs among women aged 15 to

49 (i.e. α = 4, β = 10). Therefore, b−a < 4,1,t = b−a > 10,1,t = 0. In the equation above, the

factor na−1,1,t

na,1,t
is used to approximate the number of women at risk of giving birth. If the

count in the denominator, i.e. na,1,t, is ever zero, simply replace the entire ratio by zero.

This issue arises when dealing with fertility of the HIV+ groups. The same procedure is

used for those equations if they involve dividing by zero.

B1,d for d > 1 projects HIV– births contributed by the duration group d. It can be

written as

B1,d =



b−1,d,t b−2,d,t b−3,d,t · · · b−17,d,t

0 · · · 0

...
. . .

0 0



(23)

where

b−a,d,t = s0,1,t
1

1 + SRB
f−

a,d,t

1 + pa−1,d−1,t(
na−1,d−1,t

na,d,t
)

2
(24)

(for d > 1). The B2,d’s determine the number of people infected with HIV for less than five

years at time t + 1, contributed by those in duration group d at time t. For the first two

duration groups we have
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B2,1 =



b+
1,1,t b+

2,1,t · · · b+
17,1,t

p1,1,t 0 · · · 0

0 p2,1,t
. . .

...

0 0
. . . 0

...
...

. . . . . . 0 0

0 0 · · · 0 p16,1,t p17,1,t


.

The model does now allow HIV– women to become infected and give birth to HIV+ children

in the same projection interval (i.e. zeros in the first rows). This assumption is justified by

the low level of infectivity during the first five years after infection.

B2,d for d > 1 projects the number of HIV+ births contributed by duration group d. It

can be written as

B2,d =



b+
1,d,t b+

2,d,t b+
3,d,t · · · b+

17,d,t

0 · · · 0

...
. . .

0 0



(25)

where

b+
a,d,t = s0,1,t s0,1,t

1

1 + SRB
f+

a,d,t

1 + pa−1,d−1,t(
na−1,d−1,t

na,d,t
)

2
. (26)

The remaining non-zero submatrices, i.e. B3,2,B4,3,B5,4,B5,5, project each age group to

the next oldest, and from one duration group to the next. Thus, the only non-zero elements

occur along the subdiagonal
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Bi,j =



0 0 · · · 0

p1,d = j,t 0 · · · ...

0 p2,d = j,t
. . .

0 0
. . . 0

...
...

. . . . . . 0 0

0 0 · · · 0 p16,d = j,t p17,d = j,t


.

Bayesian Melding with CCMPP

The characteristic which probably distinguishes the Bayesian approach most is the treatment

of unknown parameters as random variables. The parameters we wish to make inferences for,

θ, are first quantified as a probability density, p(θ), which characterizes prior beliefs about

the parameters. These prior beliefs are then updated using observed data, y. This process

is carried out by specifying a conditional probability of observing the data for given values

of the parameters, L(y|θ), also known as the likelihood. Bayes’ Theorem is used to update

the prior as

p(θ|y) =
L(y|θ)p(θ)

p(y)
(27)

∝ L(y|θ)p(θ) (28)

and inferences for θ are made using the posterior distribution, p(θ|y). The second line in

the equations above refers to the fact that p(y) does not depend on θ , so the posterior

distribution only needs to be known up to a constant.

Bayesian melding applies this estimation strategy to situations in which a deterministic

model, such as CCMPP, is used in the likelihood component. Let M represent the model
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which transforms a set of parameter inputs, θ, into a set of outputs, φ = M(θ). The

22 model inputs for CCMPP include the parameters relating to sex- and age-specific HIV

incidence (ja), fertility selection of women aged 15-9 (e4), fertility impairment (gd), and

vertical transmission (vd). To carry out the estimation procedure, we specify a prior density

for these inputs, p(θ), and a likelihood for the outputs and the data, L(M(θ)) (more details

to follow). These two sources of information are combined to produce the following posterior

distribution for the model inputs:

p(θ|y) ∝ L(y|M(θ))p(θ).

Inference is performed by sampling from p(θ|y) and summarizing the sample informa-

tion. Furthermore, we can run CCMPP for each set of inputs sampled, which generates a

sample from the posterior of model outputs, p(φ|y). A version of the Sampling Importance

Resampling (SIR) algorithm can be used to sample from the posterior (Rubin, 1987; Poole

and Raftery, 2000). The steps are as follows

1. Draw a sample {θ1, θ2, . . . , θn} from the prior distribution p(θ).

2. Calculate {φ1, φ2, . . . , φn} by running CCMPP for each θi.

3. Calculate the sampling importance weights:

wi =
L(y|M(θi))∑n

i =1 L(y|M(θi))

4. Draw a sample from {θ1, θ2, . . . , θn} using wi as sampling weights. This serves as an

approximation to the posterior of the inputs. Run CCMPP for the resampled θ to

obtain a sample from the posterior of the outputs.
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Priors. The specification of the prior density for the CCMPP inputs reflects our high level of

uncertainty in the parameter values. We drew a sample of size 500,000 with half coming from

diffuse uniform distributions and the other half coming from normal distributions centered

on each parameter’s maximum likelihood estimate (mle)4. This mixture ensures that the

probability space is thoroughly explored while still giving adequate weight to regions of high

likelihood. Thus, the prior density is a multivariate distribution containing 22 independent

random variables (one for each input).

The endpoints of the uniform distribution that the vertical transmission parameter is

drawn from are zero and one, which reflect the natural boundaries of a proportion. Although

we expect the fertility impairment parameters to fall between these same boundaries, these

are partially drawn from uniform distributions ranging from zero to two (with the other half

being drawn from a normal distribution centered around the mle). This provides the esti-

mation procedure with some robustness to our assumption being wrong, again reflecting the

uncertainty around the parameter values. Half of the sample of fertility selection parameters

is drawn from a uniform ranging from zero to 5. Most of the uniform distributions chosen for

the incidence parameters range from zero to two. These parameters model the age profile of

HIV incidence. A priori, we believe these profiles take on concave shapes (i.e. does not hold

water), but we are uncertain where the peak occurs. Therefore, the range on the uniform

distribution for men (women) ranges from zero to three for those aged 25 to 39(20 to 29).

All of these values are listed in Table .

4If the mle for a given parameter is close to zero, then we draw the sample from a truncated normal with

a cutoff at zero.
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Likelihood. The binomial distribution is used to calculate the likelihood of the 22 CCMPP

parameters (ja, ea, gd, vd,) and the data. The data used to evaluate the likelihood are taken

from 23 studies of 11 East African populations.5 Each data source provides observations on

at least one of the following outcomes: (1) HIV test results in a general-population sample,

(2) HIV test results in an ANC-patient sample, (3) HIV test results in all or a sample of

births from HIV+ mothers, (4) HIV tests results during a follow-up of an HIV– sample, and

(5) survival during a follow-up of HIV+ individuals (see Table 1, Heuveline, 2003). These

outcomes are converted into proportions, which are used with the binomial distribution to

estimate the parameters of interest.

Consider an example using HIV test results to help describe the estimation procedure.

First, we use the data to calculate the proportion of respondents in a particular age group who

are HIV+, namely πa,t. The population from which these data are collected is then modeled

using CCMPP. In order to project the population of interest, we need information on the

survival and fertility rates for HIV– individuals, as well as the year in which the epidemic

began for this population (i.e. sa,d,t, fa,d,t, t0). Data from the United Nations (1998, 1999)

supply the values needed for these model inputs, which are treated as fixed. Given a set of

values of the parameters in which we are interested in estimating, CCMPP produces age- and

sex-specific projections starting from the onset year of the epidemic. In the third step, we

5Most of the data are not random samples from the respective population. The geo-

graphic regions from which these data come from include Fort Portal, Uganda; Gulu, Uganda;

Masaka, Uganda; Rakai, Uganda; Mara, Tanzania; Mwanza, Tanzania; Bujumbura, Burundi;

Mangochi, Malawi; Lusaka, Zambia; Mposhi, Zambia; and Mutasa; Zimbabwe.
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match the year in which the data are collected to the closest projection year. For example,

if the data are from 1998 and the epidemic in this particular country began in 1987, then we

would take the second projection period. The projected counts from this period are used to

calculate the total number of people, Na,t, as well as the total number of HIV+ individuals,

na,+,t in the age group. We can now use the binomial distribution to calculate the likelihood

of these projections given the observed data

(
Na,t

na,+,t

)
(πa,t)

na,+,t(1 − πa,t)
Na,t−na,+,t . (29)

This procedure is performed for each of the data sets to produce 23 separate likelihoods.

Taking the natural logarithm of the likelihoods and summing gives us a total log likelihood

that combines the information across the studies. The total log likelihood can be thought

of as a function of ja, ea, gd, vd,. The set of values for these model inputs which maximizes

the total log likelihood is the set of ML estimates. We use the non-linear minimization

routine, nlm, in the stats4 package of the R programming language to maximize the total

log likelihood.6 This routine also returns the Hessian matrix which is used to calculate

standard errors.

In the original analysis, Heuveline finds that the model with the best fit to the data

includes 3 duration groups for the fertility impairment parameter (gd), 1 vertical transmission

parameter (vd), and parameters for the relative incidence ratios for the age groups from 15-

9 to 55-9. Altogether there are 22 parameters estimated.7 Figure 1 presents Heuveline’s

6The R programming language is also used to implement CCMPP; the code is available

upon request.
7Recall that the fertility selection parameter, ea, is constrained to equals 1 for each age
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estimates along with our replication of his analysis. The dots in the plot represent the point

estimates, and the lines indicate the standard errors (see Table 2 in the Appendix for the

actual values). There are a few noticeable differences between the two sets of results. Our

estimates of the relative incidence ratios for females ages 20-4 and 30-4 appear to be higher,

while our estimate of the fertility impairment parameter for the first HIV duration group

seems to be lower. The 95% confidence intervals from our results are generally tighter as well.

However, the results are fairly similar overall and we feel confident that our implementation

of CCMPP is working.

RESULTS

Histograms of the posterior samples for the CCMPP inputs are presented in Figures 3 –

5. In these plots, the smooth black line indicates the prior distribution, the dashed, grey

line depicts the ML estimate, and the black, horizontal line represents the median of the

posterior sample. These histograms are helpful, but we prefer to summarize the posteriors

with 95% confidence intervals shown in Figure 2, which are compared to the mle results.

Perhaps the most striking difference between these two estimation procedures is that

Bayesian melding results suggest much more variation in the parameter values. Virtually

all of the Bayesian intervals are wider, particularly for the CCMPP parameters relating to

the older age groups. This finding makes intuitive sense because there are very few data on

the HIV incidence of men and women over the age of 40. Thus, we would expect a lot of

variation in these distributions. This is also the case for the fertility impairment of HIV+

group except 15-9; and the relative incidence ratio, ja, is also fixed at 1 for females ages 25-9.
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women who have been infected for more than ten years. Again, there are few observations

of women in this state, which brings up the question of why the frequentist intervals are so

tight. Heuveline’s estimates are much wider than our intervals as well, which may point to

a problem with mle procedure.

The Bayesian melding procedure also provides a means for including uncertainty around

the CCMPP outputs. This is accomplished by running the model for each posterior sample

and calculating the output of interest. To illustrate, we ran CCMPP for each of the 11

populations included in the ML estimation. Age-specific HIV prevalence was then calculated

from these projections (pooled across all of the populations). The results are presented in

Figure 6. Each boxplot summarizes the range of outputs for a particular age group. The red

line imposed over the boxplots indicates the projected prevalence using the ML estimates as

the CCMPP inputs.

There is an increase in the median posterior prevalence for each age group for the 3 periods

after the onset of the epidemic. After 15 years, however, the changes are not consistent

across the age groups. Given the fact that the uncertainty in the posterior prevalence also

increases over time it is difficult to make strong claims about relative changes. However, it

is interesting to note that the median posterior prevalence declines among women ages 15-9,

but continues to increase for women ages 25 to 49. Another point worth mentioning is that

the ML estimates tend to fall near the lower end of the posterior prevalence distributions.

This is driven by the early finding that several of the posterior samples for the relative

incidence ratios resemble the flat prior distributions, while the ML estimates tend toward

zero.
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It is also possible to generate uncertainty around age- and sex-specific prevalence using

only the results from the ML estimation. If we assume that the ML estimates of the CCMPP

inputs follow a normal distribution (and are independent) with the mean and variance equal

to the ML estimate and the squared, standard error (used to calculate the confidence in-

terval), then we can sample from these distributions and run CCMPP for each sample.

These steps were taken with the results reported by Heuveline (2003), and used to calculate

projections of age-specific HIV prevalence. These results are presented in Figure 7.

Compared to the Bayesian melding results, there is much less uncertainty around the

projected prevalence using only the information from the ML procedure. As expected, the

level of projected prevalence is also much lower compared to the earlier results. The final

point to be made is that the current technique produces nonsensical projections (i.e. negative

prevalence) for certain samples from the asymptotic distributions of the ML estimates. These

projections can be ignored or truncated to zero prevalence, but neither of these options

provides a satisfactory solution to the problem since they discard the variation indicated by

the estimates.

DISCUSSION

In this analysis we applied Bayesian melding to a deterministic projection model. This

estimation procedure adequately models the various sources of uncertainty around both the

model inputs and outputs. Furthermore, this technique can be used with other methods to

inform sources of uncertainty not addressed in this analysis. For example, given the limited

data at the older age ranges, a model which collapses the older age groups may provide more
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reliable estimates. Bayesian melding can be carried out in a broader analysis which looks

at model selection or even model averaging. This is a very promising direction for future

research in this area.
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Figure 1: Maximum Likelihood Estimates of the CCMPP Parameters with 95% Confidence

Intervals (indicated by lines)
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Figure 2: 95% Confidence Intervals of the CCMPP Parameters from Maximum Likelihood

Estimation and Bayesian Melding
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Figure 3: Posterior Samples for the Vertical Transmission, Fertility Selection, and Fertility

Impairment Parameters, with Maximum Likelihood Estimates (vertical dashed lines) and

Prior Distributions (horizontal lines)
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Figure 4: Posterior Samples for the Relative Incidence Ratios for Women, with Maximum

Likelihood Estimates (vertical dashed lines) and Prior Distributions (horizontal lines)
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Figure 5: Posterior Samples for the Relative Incidence Ratios for Men, with Maximum

Likelihood Estimates (vertical dashed lines) and Prior Distributions (horizontal lines)
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Figure 6: Posterior Distribution of Age-Specific HIV Prevalence for Women
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Figure 7: Age-Specific HIV Prevalence for Women Calculated from ML Estimates and 95%

Confidence Intervals
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TABLES

Table 1: Uniform Distributions Used in the Prior Joint Distribution for the CCMPP Param-

eters

Parameter Endpoints

Vertical Transmission 0,1

Fertility Selection 0,5

Fertility Impairment

Duration 0-4 0,2

Duration 5-9 0,2

Duration 10+ 0,2

Female Relative Incidence Ratio

15-9 0,2

20-4 0,3

25-9 0,3

30-4 0,2

35-9 0,2

40-4 0,2

45-9 0,2

50-4 0,2

55-9 0,2

Male Relative Incidence Ratio

15-9 0,2

20-4 0,2

25-9 0,3

30-4 0,3

35-9 0,3

40-4 0,2

45-9 0,2

50-4 0,2

55-9 0,2
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Table 2: Maximum Likelihood Estimates for CCMPP with 95% Confidence Intervals in

Parentheses.
Heuveline Replication Corrected

Vertical Transmission 0.385 0.385 0.386

(0.297, 0.478) (0.381,0.389) (0.381,0.39)

Fertility Selection 1.672 2.028 1.731

(1.492, 1.865) (1.775,2.281) (1.569,1.893)

Fertility Impairment

Duration 0-4 0.848 0.681 0.735

(0.798, 0.909) (0.672,0.689) (0.723,0.747)

Duration 5-9 0.357 0.397 0.342

(0.276, 0.450) (0.384,0.409) (0.323,0.36)

Duration 10+ 0.293 0.188 0.29

(0.078, 0.607) (0.127,0.249) (0.214,0.366)

Female Relative Incidence Ratio

15-9 0.594 0.618 0.671

(0.545, 0.650) (0.608,0.628) (0.663,0.679)

20-4 1.325 1.608 1.6

(1.239, 1.412) (1.587,1.63) (1.581,1.619)

25-9 1.00 1.00 1.00

– – –

30-4 0.752 1.036 0.998

(0.647, 0.886) (1.01,1.061) (0.975,1.021)

35-9 0.635 0.571 0.576

(0.482, 0.762) (0.534,0.608) (0.546,0.606)

40-4 0.551 0.679 0.609

(0.409, 0.795) (0.624,0.734) (0.574,0.645)

45-9 0.356 0.435 0.421

(0.159, 0.544) (0.379,0.492) (0.421,0.421)

50-4 0.295 0.331 0.312

(0.095, 0.679) (0.253,0.409) (0.264,0.36)

55-9 0.246 0.553 0.445

(0.087, 0.627) (0.428,0.678) (0.361,0.529)

Male Relative Incidence Ratio

15-9 0.059 0.057 0.06

(0.024, 0.109) (0.056,0.058) (0.059,0.061)

20-4 0.583 0.619 0.66

(0.483, 0.684) (0.61,0.628) (0.652,0.668)

25-9 1.149 1.221 1.045

(0.986, 1.285) (1.193,1.249) (1.031,1.059)

30-4 0.936 1.126 1.11

(0.773, 1.130) (1.073,1.178) (1.11,1.11)

35-9 0.759 0.814 0.753

(0.573, 0.944) (0.757,0.872) (0.722,0.784)

40-4 0.769 0.868 0.861

(0.554, 1.007) (0.787,0.949) (0.8,0.921)

45-9 0.622 0.677 0.888

(0.409, 0.879) (0.595,0.759) (0.805,0.971)

50-4 0.417 0.532 0.227

(0.120, 0.773) (0.401,0.663) (0.126,0.328)

55-9 0.168 0.146 0.363

(0.001, 0.445) (0.105,0.187) (0.242,0.484)
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