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A Simulation Study of the Intrinsic Estimator  

for Age-Period-Cohort Analysis 

Abstract 

A new approach to the statistical estimation of Age-Period-Cohort (APC) accounting 

models for tabular data, called the Intrinsic Estimator (IE), recently has been developed. 

Some finite sampling properties of the IE have been proven for inferences based on a 

fixed number of time periods of data. Asymptotic properties as the number of time 

periods of data grows without bound also have been studied. To provide further 

exposition, especially using straightforward and replicable numerical illustrations, this 

paper presents results of simulation studies of properties of the IE. Generally, the results 

show that the IE performs well as a statistical estimator under most conditions. We also 

find that some long-standing critiques of the utility of APC accounting models rest on 

problematic logic and misuse of models.  The results of the simulation studies can inform 

empirical studies that use the IE for statistical estimation of APC models. 
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Introduction 

Age-period-cohort (APC) analysis has played a critical role in studying time-

specific phenomena in the social sciences, including economics, demography, sociology, 

and political science, for the past 80 years. Broadly defined, APC analysis distinguishes 

three types of time-related variation: age, period, and cohort effects (Hobcraft, Menken, 

and Preston 1982).  Such distinctions have important implications for measurement and 

analysis in various phenomena of interest such as consumption expenditures, fertility and 

mortality rates, test scores, and voting for Presidential candidates. One common goal of 

APC analysis is to assess the effects of one of the three factors on some outcomes of 

interest net of the influences of the other two time-related dimensions. The fundamental 

question of determining whether the process under study is some combination of age, 

period, and cohort phenomena points to the necessity of statistically estimating and 

delineating the age, period, and cohort effects (Kupper et al. 1985). 

The conventional statistical method for modeling APC data in the form of 

rectangular age-by-time period tables is the Age-Period-Cohort accounting/multiple 

classification model (Mason et al. 1973). The major challenge of estimating separate age, 

period, and cohort effects using the model is the “identification problem” induced by the 

exact linear dependency between age, period, and cohort: period - age = cohort.  This 

results in an infinite number of solutions that fit the data equally well.  It follows that one 

must assign certain additional identifying constraints to obtain unique estimates of these 

effects.  The most widely used approach to solving this problem is to place at least one 

equality constraint on two or more of the age, period, or cohort coefficients (e.g., Mason 

et al. 1973; Fienberg and Mason 1985).  This has been referred to as the constrained 



  

 - 2 - 

generalized linear models (CGLIM) approach (Yang, Fu, and Land 2004).  For example, 

one can constrain the effect coefficients of two adjacent age groups, periods, or cohorts to 

be equal to identify the model (see, e.g., Mason and Smith 1985; Yang et al. 2004). The 

main criticisms of this approach and its variants are that: 1) different equality constraints 

yield different effect coefficient estimates but identical model fit; and 2) estimates of the 

effect coefficients and thus of the patterns of change across the age, period, and cohort 

dimensions are sensitive to the choice of the identifying constraints, which depends on 

strong prior or external information that rarely exists or can be well verified (Mason and 

Wolfinger 2002; Robertson et al. 1999). 

Recently, a new approach to estimating the APC multiple classification models 

was described and evaluated by Yang and colleagues (2004).  Incorporating 

methodological developments using estimable functions in biostatistics, the new method 

of estimation termed the intrinsic estimator (IE) yields a unique solution to the model that 

is determined by the Moore-Penrose generalized inverse.  It achieves model identification 

with minimal assumptions.  Given the long history of debates over the existence of any 

solution to the APC model identification problem (Glenn 2005), critiques can be raised as 

to whether the IE method is based on a constraint of purely algebraic convenience and 

just as arbitrary as previous methods of constraints.  Is the IE just another way to go 

wrong? In response, it can be noted that Yang et al. (2004) showed that the IE has several 

key statistical properties, including estimability, finite time period unbiasedness, relative 

efficiency, and asymptotic consistency, all of which distinguish the IE from any other 

estimator.  But the conceptual foundations of the IE have been established statistically 

using mathematical proofs and thus remain abstract and potentially difficult to 
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understand.  Further exposition and analysis, especially using straightforward and 

replicable numerical illustrations, is needed to directly address this question.  

This study fills this gap through means of model validation, or numerical 

assessment of the performance of the IE under various model specifications.  The 

remainder of the paper is organized as follows.  First, we briefly review the structure and 

properties of the IE.  Second, we report and compare the numerical results from Monte 

Carlo simulations that are conducted systematically for the IE and CGLIM estimators of 

APC multiple classification models.  Third, we revisit a recent critique of the utility of 

APC models in social research through numerical examples (Glenn 2005), show the 

consequence of misuse and misinterpretation of such models, and make suggestions to 

future research in light of findings from the simulation analysis.    

 

The IE As A Statistical Estimator 

 First, the APC multiple classification model can be written in the linear regression 

form as:  

  ijkjiijY εγβαμ ++++=     (1) 

where Yij denotes the observed outcome for the i-th age group for i = 1,…,a age groups at 

the j-th time period for j = 1,…, p time periods of observed data, μ denotes the intercept 

or adjusted mean, αi denotes the i-th row age effect or the coefficient for the i-th age 

group, βj denotes the j-th column period effect or the coefficient for the j-th time period, 

γk denotes the k-th cohort effect or the coefficient for the k-th cohort for k = 1,…,(a+p-1) 

cohorts, with k=a-i+j, and εij denotes the random errors with expectation E(εij) = 0.  Note 

that Eq. (1) generalizes straightforwardly to a Generalized Linear Models (GLM) 
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framework, where it can take various alternative forms such as normal, log-linear, or 

logistic regression models (McCulloch and Searle 2001).  It can be treated as a fixed-

effects linear model after a reparametrization to center the parameters so that they sum to 

zero, i.e., 

0=== ∑∑∑ kkjjii γβα .  

The key problem in APC analysis using model (1) is the “identification problem”.  

Rewriting model (1) in matrix form, we have: 

 ε+= XbY ,      (2) 

where Y is a vector of observed outcomes, X is the regression design matrix that contains 

dummy variable column vectors for the model parameter b of dimension m = 1 + (a – 1) 

+ (p – 1) + (a + p – 2), T
papab ),...,,,...,,,...,( 211111 −+−−= γγββααμ , and ε  is a vector of 

random errors with mean 0 and constant diagonal variance matrix I2σ , with I denoting 

an identity matrix.1 The ordinary least squares estimator of model (2) is the solution b of 

the normal equations: YXXXb TT 1)(ˆ −= . The linear relationship between the age, period 

and cohort variables (period = age + birth year) translates to a design matrix, X, that is 

one less than full column rank.  This implies that XTX is singular, i.e., the inverse of XTX 

does not exist.  It follows that solution to normal equations is not unique. Therefore, the 

model identification problem exists without assigning certain additional identifying 

constraints. 

Since the work of Fienberg and Mason (1978, 1985), the conventional approach 

to multiple classification APC models in demography has been a coefficients constraints 

approach, which takes the form of placing (at least) one additional identifying constraint 

on the parameter vector b, e.g., constraining the effect coefficients of the first two periods 
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to be equal, β1  = β2.  With this one additional constraint, the model (2) is just-identified, 

the matrix (XTX) becomes nonsingular, and the least squares estimator exists (as do 

related maximum likelihood estimators for log-linear or logistic models). The main 

problem with this CGLIM approach is that the methodological usefulness of the method 

depends on strong prior information for identifying these restrictions. As has been known 

at least since the work of Mason and Smith (1985), and as was demonstrated with U. S. 

female mortality rates by Yang et al. (2004), estimates of model effect coefficients are 

sensitive to the choice of the identifying constraint. Thus, different choices of just-

identifying linear constraint can lead to widely divergent patterns of estimated effect 

coefficient across the age, period, and cohort categories.  This has led to a large 

methodological literature in demography, epidemiology, and statistics (see, e.g., the 

review of cohort analysis by Mason and Wolfinger, 2002) advising APC analysts of this 

sensitivity to model specification and that the choice of the model identifying constraint 

must be based on prior theoretical or empirical information that, unfortunately, rarely 

exists. Subsequent developments of APC modeling can largely be considered variants of 

the APC accounting models using different constraints.  Generally speaking, strong 

assumptions and sensitivities of results to choice of assumptions have largely prohibited 

reliable and consistent findings to be revealed. And statisticians acknowledge the 

limitations of existing approaches and conclude that APC analysis is still in its infancy 

(Kupper et al. 1985; Mason and Wolfinger 2002). 

So what is new about the Intrinsic Estimator (IE)? Although it is a consensus that 

the key problem for APC analysis is to identify an estimable function independent of 

constraint and uniquely determines the parameter estimates, the controversy continues 
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whether there exists an estimable function that solves the identification problem.  The 

conventional wisdom is that only the nonlinear, but not the linear components of the APC 

models are estimable (Holford 1983; Rodger 1982).  As noted in Fu (2007), however, this 

proposition has not been supported by mathematical proofs.  And it should also be 

observed that Kupper et al. (1985: Appendix B) mathematically derived a condition that 

estimable functions must satisfy and stated that an estimable function satisfying this 

condition resolves the identification problem.  Estimable functions are invariant with 

respect to whatever solution is obtained to the normal equations. It has been shown in 

works that followed that the IE satisfies the Kupper et al. condition and is the unique 

estimable function of both the linear and nonlinear components for the multiple 

classification model (Fu 2000, 2007; Yang et al. 2004).   

Using Yang et al.’s (2004) notation, the structure and the estimability of the IE 

can be shown in the following: 

1) The exact linear dependency between age, period, and cohort variables in model (2) is 

mathematically equivalent to  

00 =XB ,      (3)  

which states the property that X is singular (i.e., the column space of X is less than full 

rank) and the product of X and some nonzero vector B0 is 0 (see, e.g., Christensen, 

2000 for this proposition).  Kupper et al. (1985) showed that B0 has the specific form 

that is a function of the design matrix.  Specifically,
0

0
0 ~

~
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from above that the vector B0 is fixed because it is a function solely of the number of 

age groups (a) and periods (p).  The fact that the fixed vector B0 is independent of the 

response variable Y suggests that it should not play any role in the estimation of effect 

coefficients.  But this principle may be violated in the conventional CGLIM 

approach, as illustrated below. 

2) The parameter space of the unconstrained vector b of the linear model (2) can be 

decomposed into two parts that are orthogonal or independent to each other:  

,00 tBbb +=      (4) 

where bPb proj=0 is a parameter vector that is a linear function of b corresponding to 

the projection of b to the non-null space of X perpendicular to the null space of X 

defined by B0 (the unique normalized eigenvector with norm 1 of the singular design 

matrix corresponding to the unique eigen value 0 as shown in Eq. (3)) and a multiple 

of B0 with t being any real number (please see Figure 1 in Yang et al. [2004] for the 

geometric projection).  The special parameter vector b0 corresponding to t = 0 

satisfies the geometric projection: 

bBBIb T )( 000 −=     (5)  

3) It is important to note that the IE does not estimate the unconstrained parameter 

vector b. Rather, the IE estimates the constrained vector b0.  The above decomposition 

of parameter vector b means that each of the infinite number of possible estimators of 

parameter vector of model (2), denoted as b̂ , can be written as a linear combination: 

0
ˆ tBBb +=      (6) 
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where B is the IE that estimates b0.  Different linear constraints on coefficients of the 

b vector assign different values to t and lead to different estimates. The IE is free of 

such variation by setting t = 0 and can be obtained using the projection: 

bBBIB T ˆ)( 00−=  based on (5) or the principal component regression algorithm (see 

the Appendix A). 

4)   Combining Eqs. (3) and (6) yields the following result: 

  XBXBtXBXBtBBXbX =+=+=+= 0)(ˆ
00  (7) 

This shows that the IE B is the special estimator that uniquely determines the age, 

period, and cohort effects in the parameter subspace that is orthogonal to the null 

space of the singular design matrix.  The IE is an estimable function in the sense that 

it is invariable to the choice of linear constraints on b. And no other constrained 

functions of b, with t not equal 0, are estimable because different non-zero values of t 

introduce different sizes of influences of the design matrix that are irrelevant to 

variations in Y to the estimates.   

  The estimability of the IE also follows from the fact that it satisfies the Kupper et 

al. (1985: 830) condition for estimability of linear functions of the parameter vector b, 

namely 

,00 =Bl T       (8) 

where lT is a constraint vector (of appropriate dimension) that defines a linear 

function lTb of b. Note that, since the IE imposes the constraint that t = 0, i.e., that the 

arbitrary vector B0 has zero influence, lT = (I - B0 B0
T) by (5). Since 100 =BBT , 

condition (8) holds for the IE.   
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 Yang and colleagues (2004) further showed that the IE possesses other desirable 

statistical properties.  First, Kupper et al. (1985) noted that estimable functions are linear 

functions of the unidentified parameter vector that can be estimated without bias, i.e., 

estimable functions have unbiased estimators. Because the IE B satisfies this condition 

for APC models, it follows that, for a fixed number of time periods of data, the IE is an 

unbiased estimator.  Second, the IE also has a variance smaller than that of any other 

estimators, unless, again, the other constraints result in t = 0.  Therefore, it also has 

relative statistical efficiency.  Third, the IE has statistical consistency – under suitable 

regularity conditions on the error term process and a fixed set of age categories, the IE 

will converge asymptotically to the “true” parameters that generate the sequence of APC 

data. 

 

Model Validation Using Simulation Analysis 

 In brief, the IE possesses some valuable properties as a statistical estimator.  

Empirical analyses have also shown that the IE yields sensible estimated coefficients of 

age, period, and cohort variations in human mortality (Yang et al. 2004; Yang 

forthcoming 2008).  However, given the long history of problems and pitfalls in proposed 

methods of APC analysis, it is reasonable to question whether this estimator gives 

numerical estimates of age, period, and cohort effect coefficients that are valid, i.e., 

reveal the true effects.  This is a question of model validation – that is, does the 

identifying constraint imposed by the IE, the projection of the unconstrained APC 

accounting model vector onto the non-null space of X , produce estimated coefficients 

that capture the true age, time period, and cohort effects?  Previous mathematical proofs 
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are difficult to relate to real world situations and must rely on assumptions that may be 

violated.  And empirical data analyses are not informative of the form of the true models, 

because models using different just-identifying constraints fit the data equally well.  

Therefore, this study conducts Monte Carlo simulation analyses that compare results 

from application of an estimator such as the IE or CGLIM to artificial data wherein we 

know the true form of the underlying model that generated the data.  The simulation 

analyses can help to determine whether the IE indeed recovers the true parameters while 

CGLIM estimators do not. 

 We first investigate whether the IE is unbiased and is relatively efficient in 

samples with a fixed number of age groups and time periods.  The asymptotic results in 

previous studies on the properties of the IE apply as the number of periods in the dataset 

goes to infinity. But any dataset used in practice has only a finite number of periods. 

Thus, we explore whether the asymptotic results give good approximations to the 

behavior of the IE in finite samples by simulating datasets with five, 10, and 50 periods.  

The basic asymptotic result we investigate is that, as the number of periods increases, 

estimated age effects should converge to the true age effects when using the IE but not 

necessarily when using other estimators. If the underlying processes generating the 

period-to-period changes in the observed outcomes are constant throughout the periods of 

the simulation, then we also expect the estimated period and cohort effects converge to 

the true period and cohort effects when using the IE.2  

We conduct the simulation analyses systematically to examine the performance of 

the IE and alternative methods, CGLIM in particular, in reproducing the true models with 

all possible combinations of age, period, and cohort effects. We begin with simulations 
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where the true model is a full APC model in which all three of the age, period, and cohort 

effects are present.  This serves as a numerical illustration of the previous theoretical 

discussions of the properties of the IE provided by Yang et al. (2004).  We then extend 

the analyses to other specifications of the true models wherein one or two effects are null.  

The APC models using the CGLIM and IE approaches are estimated using Stata 

9.2 through apc_cglim.ado and apc_ie.ado, respectively.  Both ado-files may be obtained by 

typing “ssc install apc” on the Stata command line on any computer connected to the 

Internet, or downloaded from the Statistical Software Components archive at 

http://ideas.repec.org/s/boc/bocode/s456754.html. The programs are documented more 

fully in Stata help files. 

Results for APC Models: True Effects of A, P, and C All Present  

We fix the number of age categories in all simulations given the fact that humans 

have a relatively fixed life span.  We let the number of age categories to be 10 without 

loss of generality.  For a given number of periods P, we generate 1,000 datasets by Monte 

Carlo simulation in which the entries in the 10 × P outcome matrix are distributed 

according to: 

),(~ 2σμNyij , 

 where3  

)10sin(1.0)cos(1.0)sin(1.0)5.5(1.03.0 2
ijijijij cohortcohortperiodage ⋅+++−+=μ

 252 =σ  

This equation for the data-generating process tells us what the true age, period and cohort 

effects are: 

age effect at age a 0.1(a – 5.5)2 

period effect in period p 0.1sin(p) 
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cohort effect in cohort c 0.1cos(c) + 0.1sin(10c) 
 

So that the true effects have mean zero in each category in accord with the constraints on 

the effect coefficient specified earlier, we subtract constants from the effects listed above, 

where the constants are calculated as the mean effects for each category.  To explore the 

finite time period properties of various estimators, we then estimate age, period and 

cohort effects in each simulated dataset for a given P using the IE and using three 

different CGLIM estimators: one with the first two age effects constrained to be equal 

(CGLIM_a), one with the first two period effects constrained to be equal (CGLIM_p), 

and one with the first two cohort effects constrained to be equal (CGLIM_c).  To explore 

the large sample properties of these estimators, we let P increase from five to 10, and to 

50 and repeat the simulations for each number of P. 

Table 1 reports the results on age, period, and cohort effects estimated from data 

simulated with five time periods (P = 5).  For each age, period, and cohort effect in the 

model, we show the true value and, for each estimator, the mean, standard deviation and 

mean squared error (MSE) of the estimated effect across 1,000 simulations. By 

comparing the mean of the simulated estimates to the true values, we can assess the 

degree of unbiasedness for each estimator.  The standard deviation of the simulated 

estimates shows how much the estimated parameters vary from sample to sample.  

Smaller variance relates to relative efficiency.  Mean squared error (MSE) is the average 

squared difference between the estimated parameter and the truth; this measure of 

accuracy takes into account both bias and variance.   

[Table 1 and Figure 1 about here] 
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Figure 1 compares the means of IE and CGLIM estimates shown in Table 1.  Two 

of the four estimators recover the profile of the age, period, and cohort effects 

qualitatively: the IE and the CGLIM_p.  The other two sets of CGLIM estimates that 

constrain the first two age and first two cohort effects to be equal clearly fail to recover 

true forms of these effects because the constraints are incorrect: the first two true age 

effects and the first two true cohort effects are not equal; and the differences between the 

two true effects are large.  The CGLIM_p estimator recovers the qualitative shapes of 

true effects more closely because constraining the coefficients of the first two period 

effects to be equal more closely approximates the fact that the difference between the two 

true effects is much smaller.  Scrutiny of the numerical results in Table 1, however, 

suggests that CGLIM_p estimates are far off the mark in quantitative terms; only for the 

IE is the mean of each estimated effect close to the true value and hence unbiased.  This 

is a direct result of the nonestimability of the CGLIM estimator.  That is, any substantial 

departure from the IE constraint, which incorporates a large nonzero t, will not yield an 

estimable function and thus will induce bias in the estimates. 

Nonetheless, this constrained model illustrates numerically a property established 

algebraically by Kupper et al. (1985: 830), namely, that, if the constraint used to just-

identify the APC accounting model is, indeed, satisfied by the underlying true model, 

then the orthogonality condition stated above in Eq. (8) will hold and the corresponding 

constrained coefficient vector is estimable.  With respect to the specification of the true 

effect coefficients in the present simulation, for example, it can be noted that, due to the 

periodicity of the age coefficients, several are equal.  Thus, for example, if the analyst 

were to impose the identifying constraint a1 = a10, then the corresponding constrained 
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coefficient vector will be estimable, and, in fact, the resulting CGLIM estimated 

coefficients will be within sampling and rounding error of those estimated by the IE. 

 Table 1 also shows that the IE exhibits substantially less sampling variation than 

the CGLIM estimators.  The IE estimates of A, P, and C effects have standard deviations 

that range between 0 and 1.  CGLIM_p estimates have the smallest standard deviations 

among all CGLIM estimates, but their standard deviations are still at least 10 times larger 

than those of the IE.  The IE also has much smaller mean squared errors. The MSEs of 

the IE estimates are close to 0, whereas those of the CGLIM_p estimators can be as large 

as 6.  All estimators have larger MSEs for the youngest and oldest cohorts because these 

cohorts are located at the upper and lower corners of the age by period table and have the 

smallest sample sizes.  The CGLIM_a and CGLIM_c estimates have MSEs too large to 

provide reliable findings.  It is noteworthy that the cohort effects are particularly poorly 

estimated by the CGLIM models. 

To see what happens to the above estimators in cases when analysts have access 

to more data, we next increase the number of time periods to 10 and 50.  Because the 

CGLIM_p continues to yield the best estimates among all CGLIM estimators, the 

following analysis focuses on the comparison of the CGLIM_p and the IE.  

The means and standard errors of age effects estimates are shown in Figure 2 for 

the IE and the CGLIM_p by number of P.  The means of the IE are extremely close to the 

true age effects for all P and rapidly approach the true age effects as P increases from five 

to 50.  The means of the CGLIM_p also recover the true age effects well and do better 

with increasing P, but to a less extent than the IE.  Although the means of the IE and 

CGLIM_p are close, the CGLIM_p shows much larger standard errors and thus 
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statistically significant difference between the mean and the truth.  Comparison of the 

standard errors across P (not shown) suggests decreasing sampling variations for both 

estimators with increasing P but much smaller variability for the IE for all P.  Figure 3 

further shows the advantage of the IE in terms of MSE.  The IE has MSE much closer to 

0 than the CGLIM_p for all P.  Whereas the MSE of the IE approaches 0 as P increases, 

that of the CGLIM_p, although decreasing, is far above 0.     

[Figures 2 and 3 about here] 

Figures 4 and 5 present the mean and MSE of the IE and CGLIM_p estimates of 

period effects and cohort effects, respectively.  Similar to the results shown earlier, the IE 

recovers the true effects much better for all P, increases in precision, and decreases in 

MSE with increasing P.  In contrast, the CGLIM_p shows much larger departures from 

the true effects that do not decrease with increasing P.  The first two time periods 

coefficients were constrained to be equal by the CGLIM_p, whereas in fact they increase 

slightly from time one to time two.  As a result, the period effects estimated by the 

CGLIM_p rotate the true period effects (horizontal oscillations) upward.  And the cohort 

effects estimates are rotated downward.  While the IE has MSE close to 0, the CGLIM_p 

also produces much larger and in some cases increasing MSE with increasing P.  This 

illustrates that linear constraints with even small deviations from the truth can result in 

coefficient estimates with large bias in unknown directions that will not lessen with more 

periods of data.   

[Figures 4 and 5 about here] 

Several insights follow from the above analysis:   
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First, the IE produces estimates of the A, P, and C effects that are more invariant 

to changes in the design matrix, such as additional time periods of data, than estimates 

produced by estimators that incorporate such influences. This precisely is because of its 

estimability/unbiasedness property.  In this sense, the IE reduces the part of the 

subjectivity in the estimator that is due to the influence of fixed component determined 

by the shape of the data by removing it.   

Second, both the IE B and any other estimator 0
ˆ tBBb += with 0≠t obtained from 

an equality constraint produce asymptotically consistent age effects as the number of time 

periods of data increase without bound.  Therefore, with a large number (e.g., 50) of 

periods of data, differences among estimators decline and it makes little difference which 

identifying constraint is employed.  In most empirical APC analyses, however, there 

usually are a small number (e.g., 5) time periods of observations available for analysis.  

In these cases, the differences can be substantial and an unbiased estimator should be 

preferred to a biased estimator, as the latter can be misleading with respect to the 

estimated trends.   

Third, as a result of the above properties, the IE may provide a means for the 

accumulation of reliable estimates of the A, P, and C trends when more data become 

available over time, whereas the other estimators may not. 

 

Results for APC Models: True Effects of A, P, and C Not All Present 

 We next investigate how well the estimators perform when one of the three sets of 

true age, period, and cohort effects is absent. For instance, age and period (AP) effects 

models with null cohort effects can have useful applications to such phenomena as 
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fertility when the age-specific fertility rates are dependent on time period, but not birth 

cohort. The question naturally arises then as to how well the estimators perform when 

one of the three sets of effect coefficients has true effects that are equal to zero. 

Using the Monte Carlo simulation from the same normal distribution shown 

earlier, we thus specify true effects to be the following: 

age effect at age a 0.1(a – 5.5)2 

period effect in period p 0.1sin(p) 
cohort effect in cohort c 0 
 

Similarly, we conducted the simulations for models with true AC, PC, A, P, and C effects 

by specifying the true effects of P, A, PC, AC, and AP to be zero, respectively. 

Figure 6 shows the results of estimates of APC model with true A and P effects, 

but no C effects given five periods of data. The IE reproduces the true A and P effects 

remarkably well just as before and is much more superior in terms of MSE to the 

alternative estimator.  It does show some small deviations from the true cohort effect 

which is zero.  Figure 7 shows that such deviations decreased with increasing P.  On 

average, the IE correctly estimates that there are no cohort effects in the data. The 

CGLIM_p estimator (as well as other CGLIM estimators) incorrectly finds cohort effects 

that are different from zero and change substantially across birth cohorts. In addition, bias 

and MSE of the CGLIM estimators do not decrease with more periods of data. 

[Figures 6 and 7 about here] 

Results are similar when we set all of the true P effects to zero in the data: only 

the IE reproduced true A and C effects and detected that no P effects were truly present.  

And the results hold for the other cases where one or two true effects are zero.  It should 
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be noted, however, that this statement applies to the performance of the IE in large 

samples of periods better than small samples.   

 

Misuse of APC Models: Revisiting A Numerical Example 

The above exposition and simulation analyses suggests that the IE indeed yields 

unbiased estimates of age, period, and cohort effects, have relative efficiency compared 

to alternative estimators, and converge to the true effects with increasing number of time 

periods.  This seems to be in conflict with the age-old notion that there is no solution to 

the APC model identification problem because there can be any number of estimates that 

fit the data equally well.  This notion is best represented in a recent critique of the utility 

of APC models in social research raised by Norval Glenn (2005).  We next revisit the 

numerical example given by Glenn to evaluate this critique. 

[Table 3 about here] 

Glenn based his analysis on some hypothetical data sets that are cited here as 

Tables 3.1 – 3.3 for purpose of illustration.  These data potentially show very different 

age, period, and cohort effects.  The dependent variable values in Table 3.1 show obvious 

age variations with an increment of 5 for each successive age, but seemingly no period or 

cohort effects.  Glenn correctly pointed out that there could be some combination of age 

and offsetting period and cohort effects and an infinite number of combinations of such 

effects can produce the pattern of variation.  Data in Tables 3.2 and 3.3 show stronger 

period and cohort variations, respectively, and similarly can arise from many different 

combinations of true effects.  In subsequent analyses, Glenn used the CGLIM approach 

to estimate APC models of these data.  We present these results of the CGLIM analyses 
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for data of Table 3.1 in Table 4.  Corresponding analyses were conducted for the other 

two data sets but are not reported because the results are similar.  Models 1 to 4 using 

Glenn’s results confirm the point made earlier that different equality constraints result in 

drastically different estimates of A, P, and C effects.  For purpose of comparison, we add 

Model 5 estimated by the IE. There are two fallacies in Glenn’s interpretation of results 

of Models 1 to 4.   

[Table 4 about here] 

First, patterns in hypothetical data do not suggest true effects generating them. 

Glenn acknowledged that the data in Table 3.1 can be generated by any forms of the true 

A, P, and C effects, but then contradicted himself in the discussion of the modeling 

results claiming that “For this simulation experiment, I know what the effects are and can 

apply the Mason et al. method to the data to see how well it performs” (p. 12). 

Particularly, he assigned the true effects to be age effects shown in Models 1 and 2.  

Based on this incorrect starting point of what the true effects are, he went on to conclude 

that the method gives “grossly incorrect results” using certain constraints (like those in 

Models 3 and 4) and hence it is impossible to estimate APC effects with this method in 

practice when one cannot know what the right constraints are.  It is clear from our 

simulation analysis shown above that one can only examine the performance of certain 

model estimators by specifying the true effects that generate the data rather than using 

certain data to speculate what the true effects are.   

Second, the assumption that the age, period, and cohort trends in any given set of 

data can be best estimated by full APC models rather than by reduced models of one or 

two of the three effects needs to be tested.  If the true effects of one or two of the three 
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factors are null, the full model will overfit the data and produce inaccurate estimates.  In 

addition, the full model has the model identification problem.  The results shown in 

Models 1 to 4 given by Glenn reflect precisely this problem.  And different linear 

constraints used to estimate the full model are bound to produce different estimates that 

are inaccurate in different degrees.  Unlike in the simulation exercise, analysts cannot 

know which true effects are present and which are not, given only observed data.   

One way to select among alternative models is to conduct model fit tests of 

whether all three of the age, period, and cohort effects are present and should be 

simultaneously estimated (see, e.g., Mason and Smith 1985).  That is, analysts should 

successively estimate model with the A, P, C, AP, AC, PC, and APC sets of effect 

coefficients and examine the corresponding model fit statistics for improvement as 

additional sets and combinations of coefficients are added.  This gives a sense of the 

relative importance of A, P, and C effects and the best model that summarizes the trends 

in the observed data.  Accordingly, for the data of Table 3, we estimated nested models 

and computed model fit statistics for the three sets of data. The results shown in Table 5 

suggest that the best fitting models for data sets one, two, and three are age effects only, 

period effects only, and cohort effects only or age and period effects only models, 

respectively.  Because the full APC models are not the preferred models, the discussion 

of which identifying constraint gives the correct estimates is not productive and can be 

avoided given the findings from the model selection analysis.   

[Table 5 about here] 

There is a caveat for use of model fit tests for full APC models identified by using 

different constraints.  As has been noted many times over the years in discussions of the 
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APC accounting model (see, e.g., Pullum 1977, 1980; Rogers 1982), different just-

identified models will generate the same data and yield exactly the same model fit, and 

therefore goodness-of-fit can not be used as a criterion by which to select a just-identified 

model.  But estimability can be so used.  And the IE stands out in this respect. 

If, indeed, the preferred model is a simpler model with true age effects or any 

other effects, will the IE be useful in revealing such true effects?  We have shown in the 

foregoing Monte Carlo simulations that the answer is yes with some qualifications.  For 

example, in cases when there are only true age effects, but no period and cohort effects, 

Figure 8 suggests that the IE does not recover the true zero effects well if we have only 

five periods of data and may lead to false conclusions about these effects.  But as the 

number of periods increases, the IE largely reproduces the true zero period and cohort 

effects.   

Revisiting the numerical example given in previous sociological literature, we 

find that the long-standing critique of the utility of APC accounting models rests on 

problematic logic and misuse of APC models.  There is no adequate proof that there 

exists no estimable function of the linear components of the effects, only 

misunderstanding of what is or is not estimable.  

 

Conclusion 

 The problem of obtaining reliable estimates of the patterns of simultaneous 

changes across age groups, time periods, and cohorts has long provided an intriguing 

challenge in many contexts in the social sciences.  This paper has studied the 

performance of a new method of estimation of the APC accounting model, namely, the 
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intrinsic estimator.  The IE has passed simulation tests of validity under various 

circumstances and can provide a useful tool for the accumulation of scientific knowledge 

about the distinct effects of age, period, and cohort effects in social research.   

The APC multiple classification model has been mostly widely used in 

demographic and epidemiologic research wherein the outcomes of interest are usually 

vital events that are Poisson rather than normal variates.  We therefore also conducted 

simulation analysis sampling from Poisson distributions.  The findings were identical to 

those reported here.  In sum, the simulations show that, regardless of the sampling 

distribution and the sample size of the observed data, the IE is more accurate and efficient 

than the CGLIM. The IE performs well even in datasets with just five periods, perhaps 

the smallest sample size that might be used in practice. By contrast, the CGLIM 

estimators give incorrect results even when there are as many as fifty periods, which 

would be an unusually large sample in many social and demographic applications.   

Is the intrinsic estimator then a “complete solution” to the identification problem 

in APC and similar models in social science?  No.  Structural identification problems are 

just that — points of underidentification of parameters due to the very nature of the 

underlying models.  There is not now, and can never be, a complete resolution of such 

problems.  But there can be variations among approaches to structural identification 

problems with respect to desirable statistical properties.  Because of its desirable 

properties as a statistical estimator – including its ability, as demonstrated above, to 

produce good estimates of the underlying patterns of change in age, period, and cohort 

effects with a small number of time periods of data – the IE adds a potentially useful 

method to the toolkit available for these analyses.   



  

 - 23 - 

Does our results mean that researchers should naively apply the IE to APC data 

and expect to obtain meaningful results?  No.  APC analysis is well known to be 

treacherous for reasons articulated by Glenn (2005) and should, in all cases, be 

approached with great caution and awareness of its many pitfalls.  Every statistical model 

has its limits and will break down under some conditions.  We have shown one such 

condition, in which the IE produces larger bias in small samples when the true effects are 

zero than when the true effects are not zero.   We also have shown, by analyses of 

Glenn’s (2005) numerical example, that researchers should conduct careful model 

selection tests before using full APC models.  We have shown that simulation analysis is 

one avenue for model validation.  Imposition of a full APC model on data when a 

reduced model fits the data equally well or better constitutes a model misspecification 

and should be avoided. On the other hand, when all three of the age, period, and cohort 

dimensions appear to be operative in producing a given set of tabulated rates, application 

of the Intrinsic Estimator may be quite useful in producing meaningful and stable 

estimates of the trends across the age, period, and cohort categories. 

 

Endnotes:

                                                 
1 Note that the parameters αa, βp, and γa+p-1 are not included in the parameter vector b because they can be 
uniquely determined by use of the sum-to-zero constraint. The use of reference categories is equivalent to 
the translation by a constant of the parameter estimates produced by the constraint and thus of no 
substantive importance. 
 
2 If such processes are not constant and change from period to period, regardless of the estimator used, 
estimated period and cohort effects cannot be expected to converge to their true values as the number of 
periods increases because adding a period to the dataset does not add information about the previous 
periods or about cohorts not present in the period just added. 
 
3 We chose the variance of 25 so that the sampling variability of the estimator would be visible in our 
graphs. Experiments with smaller and larger variances produced qualitatively similar results. 
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Appendix A: The Principal Components Computational Algorithm for the Intrinsic 

Estimator  

i) Compute the eigen-vectors ruu ,,1 K  of matrix XTX, where X denotes the design matrix 

of model (2). Normalize them with rum ,,1K=  and denote the orthonormal matrix as 

T
ruuU ),( 1 K= ; 

ii) Identify the special eigenvector B0 corresponding to eigenvalue 0. Denote 

01 Bu = without loss of generality; 

iii) Select the principal components to be the remaining eigen-vectors ruu ,,2 K with non-

zero eigen-values; 

iv) Fit a principal components regression (PCR) model with the outcome variable of 

interest (e.g., logged death rates) as the response using a design matrix V whose column 

vectors are the principal components ruu ,,2 K , i.e., ),,( 2 ruuV K= , to obtain the 

coefficients ( rww ,,2 K );  

v) Set coefficient w1 = 0 and transform the coefficients vector w = T
rww ),,( 1 K by the 

orthonormal matrix T
ruuU ),( 1 K=  to obtain the intrinsic estimator B = Uw. 

Note:  Instead of using reference categories, the IE uses the usual ANOVA-type 

constraints: 0=== ∑∑∑ kkjjii γβα . The computational algorithm used by the IE 

estimates effect coefficients for each of the a – 1, p – 1, and a + p – 2 age, period, and 

cohort categories, respectively, which is consistent with the definition of the parameter 

vector b.  Then the IE uses the zero-sum constraints to obtain the numerical values of the 

omitted age, period, and cohort categories. 
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Table 1. Simulation Results (n = 1000) of the IE and CGLIM Estimators of APC Models: P = 5 
 

   IE  CGLIM_a (a1=a2) CGLIM_p (p11=p12) CGLIM_c (c1=c2) 

Variable True 
Effect Mean sd MSE Mean sd MSE Mean sd MSE Mean sd MSE 

Age               
a1 1.200 1.172 2.408 5.795 -2.198 14.035 208.3 1.357 10.877 118.2 1.858 30.111 906.2 
a2 0.400 0.423 2.218 4.915 -2.198 14.035 203.5 0.567 8.572 73.4 0.956 23.455 549.9 
a3 -0.200 -0.252 2.283 5.208 -2.124 9.221 88.6 -0.149 6.268 39.3 0.129 16.700 278.7 
a4 -0.600 -0.603 2.362 5.573 -1.726 5.954 36.7 -0.541 4.285 18.3 -0.374 10.249 105.0 
a5 -0.800 -0.797 2.331 5.426 -1.172 3.052 9.4 -0.777 2.606 6.8 -0.721 3.977 15.8 
a6 -0.800 -0.780 2.312 5.340 -0.406 2.837 8.2 -0.801 2.636 6.9 -0.856 4.092 16.7 
a7 -0.600 -0.643 2.259 5.101 0.481 5.801 34.8 -0.705 4.135 17.1 -0.871 10.271 105.5 
a8 -0.200 -0.145 2.331 5.432 1.728 9.204 88.4 -0.248 6.440 41.4 -0.526 16.770 281.1 
a9 0.400 0.358 2.235 4.990 2.979 12.591 165.0 0.213 8.599 73.9 -0.176 23.807 566.5 

a10 1.200 1.267 2.302 5.296 4.637 16.174 273.2 1.081 10.675 113.9 0.581 29.482 868.7 
Perioda               

  p11 -0.110 -0.023 1.429 2.046 1.475 7.157 53.7 -0.106 3.610 13.0 -0.328 13.114 171.9 
  p12 -0.064 -0.064 1.475 2.173 0.684 3.784 14.9 -0.106 3.610 13.0 -0.217 7.019 49.2 
  p13 0.032 0.000 1.462 2.136 0.000 1.462 2.1 0.000 1.462 2.1 0.000 1.462 2.1 
  p14 0.089 0.109 1.390 1.932 -0.639 3.790 14.9 0.151 2.743 7.5 0.262 6.788 46.1 
  p15 0.055 -0.022 1.486 2.211 -1.520 7.098 52.8 0.061 4.915 24.1 0.283 13.419 179.9 

Cohort              
c1 -0.006 -0.245 4.714 22.257 -14.315 65.589 4502.3 0.065 41.572 1726.5 2.088 108.599 11786.3 
c2 0.044 -0.092 3.467 12.024 -13.413 61.125 3913.6 0.176 39.210 1535.9 2.088 108.599 11786.1 
c3 -0.203 -0.242 2.995 8.962 -12.814 57.620 3475.8 -0.014 36.896 1360.0 1.787 99.857 9965.5 
c4 0.004 -0.032 2.526 6.377 -11.855 54.197 3074.9 0.154 34.487 1188.2 1.844 93.307 8700.9 
c5 -0.003 0.015 2.321 5.380 -11.059 50.752 2695.4 0.160 32.539 1057.8 1.739 86.485 7475.2 
c6 0.060 -0.046 2.540 6.454 -10.372 47.120 2326.9 0.058 30.080 903.9 1.525 79.842 6370.5 
c7 0.147 0.172 2.647 7.001 -9.405 43.721 2000.9 0.234 27.755 769.6 1.591 73.440 5390.1 
c8 -0.120 -0.105 2.445 5.973 -8.933 40.140 1687.3 -0.084 25.567 653.0 1.161 66.656 4440.2 
c9 -0.007 0.060 2.456 6.031 -8.019 36.361 1385.0 0.040 23.613 557.0 1.174 60.066 3605.7 

c10 -0.140 -0.111 2.268 5.139 -7.441 33.486 1173.5 -0.172 21.563 464.5 0.850 53.464 2856.6 
c11 -0.010 0.052 2.537 6.436 -6.530 30.168 951.7 -0.051 19.621 384.6 0.861 46.768 2185.8 
c12 0.137 0.261 2.772 7.692 -5.571 26.900 755.5 0.117 17.396 302.3 0.918 40.302 1623.2 
c13 -0.008 0.208 3.268 10.718 -4.876 24.050 601.5 0.023 15.559 241.8 0.712 33.969 1153.3 
c14 0.106 0.106 5.332 28.401 -4.229 22.501 524.6 -0.121 14.134 199.6 0.458 27.651 763.9 

     aPeriods are labeled such that cohort = period – age. 
      Note: The intercept is a normalizing constant, so its estimates do not matter for evaluation of performance of certain estimators and are not presented here. 
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Table 2. Simulation Results (n = 1000) of the IE and CGLIM Estimators: Age Effects by Number of Time Periods 
 

    IE  CGLIM_a CGLIM_p CGLIM_c 
Age  True 

Effect P = 5 P = 10 P = 50 P = 5 P = 10 P = 50 P = 5 P = 10 P = 50 P = 5 P = 10 P = 50 

a1 mean 1.200 1.172 1.215 1.233 -2.198 -2.389 -2.599 1.357 1.407 1.521 1.858 1.758 3.155 
 sd  2.408 1.592 0.694 14.035 9.532 4.181 10.877 10.659 10.361 30.111 28.481 27.687 
 MSE  5.795 2.531 0.482 208.337 103.655 31.900 118.224 113.547 107.351 906.214 810.661 769.646 

a2 mean 0.400 0.423 0.414 0.381 -2.198 -2.389 -2.599 0.567 0.563 0.606 0.956 0.837 1.876 
 sd  2.218 1.559 0.702 14.035 9.532 4.181 8.572 8.343 8.094 23.455 22.245 21.531 
 MSE  4.915 2.429 0.492 203.540 98.553 26.461 73.435 69.571 65.484 549.880 494.557 465.310 

a3 mean -0.200 -0.252 -0.191 -0.185 -2.124 -2.193 -2.314 -0.149 -0.085 -0.025 0.129 0.111 0.883 
 sd  2.283 1.553 0.671 9.221 6.094 2.682 6.268 6.088 5.775 16.700 15.821 15.377 
 MSE  5.208 2.410 0.450 88.646 41.075 11.658 39.256 37.041 33.344 278.721 250.145 237.400 

a4 mean -0.600 -0.603 -0.613 -0.586 -1.726 -1.814 -1.864 -0.541 -0.549 -0.490 -0.374 -0.432 0.055 
 sd  2.362 1.569 0.688 5.954 3.926 1.694 4.285 3.842 3.490 10.249 9.537 9.237 
 MSE  5.573 2.461 0.473 36.680 16.870 4.464 18.344 14.747 12.182 104.997 90.894 85.667 

a5 mean -0.800 -0.797 -0.846 -0.794 -1.172 -1.247 -1.220 -0.777 -0.825 -0.762 -0.721 -0.786 -0.580 
 sd  2.331 1.608 0.715 3.052 2.012 0.901 2.606 1.981 1.360 3.977 3.514 3.146 
 MSE  5.426 2.585 0.510 9.446 4.245 0.988 6.786 3.921 1.849 15.810 12.333 9.934 

a6 mean -0.800 -0.780 -0.832 -0.800 -0.406 -0.431 -0.374 -0.801 -0.853 -0.832 -0.856 -0.892 -1.014 
 sd  2.312 1.592 0.669 2.837 2.009 0.880 2.636 1.957 1.301 4.092 3.569 3.096 

 MSE  5.340 2.534 0.447 8.194 4.168 0.955 6.943 3.829 1.693 16.734 12.735 9.619 
a7  mean -0.600 -0.643 -0.683 -0.619 0.481 0.518 0.658 -0.705 -0.747 -0.715 -0.871 -0.864 -1.260 
 sd  2.259 1.552 0.673 5.801 3.789 1.718 4.135 3.950 3.516 10.271 9.638 9.253 
 MSE  5.101 2.414 0.453 34.784 15.595 4.533 17.095 15.609 12.366 105.463 92.858 85.969 

a8 mean -0.200 -0.145 -0.161 -0.199 1.728 1.841 1.930 -0.248 -0.268 -0.359 -0.526 -0.463 -1.266 
 sd  2.331 1.610 0.672 9.204 6.175 2.650 6.440 6.001 5.766 16.770 15.799 15.389 
 MSE  5.432 2.592 0.451 88.351 42.253 11.552 41.431 35.982 33.243 281.062 249.427 237.735 

a9 mean 0.400 0.358 0.423 0.389 2.979 3.226 3.370 0.213 0.274 0.165 -0.176 0.001 -1.106 
 sd  2.235 1.568 0.683 12.591 8.486 3.711 8.599 8.472 8.115 23.807 22.343 21.589 
 MSE  4.990 2.457 0.466 165.016 79.926 22.574 73.896 71.717 65.845 566.534 498.855 467.902 

a10 mean 1.200 1.267 1.274 1.180 4.637 4.878 5.012 1.081 1.082 0.891 0.581 0.731 -0.742 
 sd  2.302 1.549 0.684 16.174 10.781 4.689 10.675 10.520 10.356 29.482 28.234 27.640 
 MSE  5.296 2.402 0.468 273.157 129.645 36.499 113.861 110.577 107.239 868.679 796.560 766.961 
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Table 3. Patterns of Data Showing Age, Period, and Cohort Effects (Glenn 2005) 
 

Table 3.1 “Pure Age Effects” (Glenn 2005: Table 1.2) 
   Year    
Age 1950 1960 1970 1980 1990 2000 
20-29 50 50 50 50 50 50 
30-39 55 55 55 55 55 55 
40-49 60 60 60 60 60 60 
50-59 65 65 65 65 65 65 
60-69 70 70 70 70 70 70 
70-79 75 75 75 75 75 75 

 
Table 3.2 “Pure Period Effects” (Glenn 2005: Table 1.3) 

   Year    
Age 1950 1960 1970 1980 1990 2000 
20-29 30 35 40 45 50 55 
30-39 30 35 40 45 50 55 
40-49 30 35 40 45 50 55 
50-59 30 35 40 45 50 55 
60-69 30 35 40 45 50 55 
70-79 30 35 40 45 50 55 

 
Table 3.3 “Pure Cohort Effects” (Glenn 2005: Table 1.4) 

   Year    
Age 1950 1960 1970 1980 1990 2000 
20-29 50 55 60 65 70 75 
30-39 45 50 55 60 65 70 
40-49 40 45 50 55 60 65 
50-59 35 40 45 50 55 60 
60-69 30 35 40 45 50 55 
70-79 25 30 35 40 45 50 

 
Note: As noted by Glenn, data in Table 3.1 could show alternative true effects such as pure age effects, 
offsetting period and cohort effects, or a combination of age effects and offsetting period and cohort 
effects. The same applies to data in Tables 3.2 and 3.3. 
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Table 4. Regression Coefficients of APC Models of Data in Table 3.1 Estimated by 
the CGLIM and IE 

 
 CGLIM* IE 
Variable 1 2 3 4 5 
Intercept 50.0 50.0 25.0 28.7 62.5 
Age      

20-29 -12.5 -12.5 0.0 -5.0 -11.2 
30-39 -7.5 -7.5 0.0 -5.0 -6.7 
40-49 -2.5 -2.5 0.0 -1.4 -2.2 
50-59 2.5 2.5 0.0 1.1 2.2 
60-69 7.5 7.5 0.0 3.6 6.7 
70-79 12.5 12.5 0.0 6.4 11.2 

Period      
1950 0.0 0.0 -12.5 -5.0 -1.3 
1960 0.0 0.0 -7.5 -5.0 -0.8 
1970 0.0 0.0 -2.5 -1.4 -0.3 
1980 0.0 0.0 2.5 1.1 0.3 
1990 0.0 0.0 7.5 3.6 0.8 
2000 0.0 0.0 12.5 6.4 1.3 

Birth Cohort      
1880 0.0 0.0 25.0 11.2 2.6 
1890 0.0 0.0 20.0 10.1 2.1 
1900 0.0 0.0 15.0 7.7 1.6 
1910 0.0 0.0 10.0 5.3 1.1 
1920 0.0 0.0 5.0 3.0 0.5 
1930 0.0 0.0 0.0 0.2 0.0 
1940 0.0 0.0 -5.0 -2.0 -0.5 
1950 0.0 0.0 -10.0 -4.7 -1.0 
1960 0.0 0.0 -15.0 -7.3 -1.6 
1970 0.0 0.0 -20.0 -9.9 -2.1 
1980 0.0 0.0 -25.0 -13.8 -2.6 

* Adopted from Glenn (2005: Table 2.1);  the regression coefficients are centered to sum to zero within 
age, period, and cohort categories based on the usual constraint, 0=== ∑∑∑ kkjjii γβα  (see 
Footnote 1); coefficients highlighted in Bold are constrained to be equal. 
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Table 5. Model Fit Statistics for Data in Table 3 
 

For Data in Table 3.1 
Models Log-Likelihood DF BIC 
A 121.8 6 -107.5 
P -128.3 6 2516.4 
C -115.8 11 1222.5 
AP 123.1 11 -89.6 
AC 132.6 16 -71.7 
PC 132.6 16 -71.7 
APC 122.6 20 -57.3 
    

For Data in Table 3.2 
Models Log-Likelihood DF BIC 
A -128.3 6 2517.6 
P 119.9 6 -107.5 
C -115.8 11 1223.5 
AP 121.4 11 -89.6 
AC 125.4 16 -71.7 
PC 129.8 16 -71.7 
APC 131.5 20 -57.3 
    

For Data in Table 3.3 
Models Log-Likelihood DF BIC 
A -128.3 6 2518.3 
P -128.3 6 2516.9 
C 126.1 11 -89.6 
AP 125.4 11 -89.6 
AC 133.5 16 -71.7 
PC 129.4 16 -71.7 
APC 124.4 20 -57.3 

   
Note: Model fit statistics, BIC (Bayesian Information Criterion), are calculated by Stata 
GLM; the smaller the AIC and BIC, the better the model fit.  The best fitting models for each 
dataset are highlighted in Bold. 



  

- 32 - 

Figure 1. Means of Estimates from 1000 Simulations of APC Models with P = 5: IE vs. CGLIM 
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Figure 2. Means and Standard Errors of Age Effects Estimates from 1000 Simulations of APC Models by P: IE vs. CGLI M 
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Figure 3. Mean Squared Errors of the Age Effects Estimates from 1000 Simulations of APC Models by P: IE vs. CGLIM 
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Figure 4. Period Effects Estimates from 1000 Simulations of APC Models by P: IE and CGLIM 
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Figure 5. Cohort Effects Estimates from 1000 Simulations of APC Models by P: IE and CGLIM 
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Figure 6. Results from 1000 Simulations of APC Models with P = 5: True AP Effects but No True C Effects 
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Figure 7. Cohort Effects Estimates from 1000 Simulations of APC Models by P: True AP Effects but No True C Effects 
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Figure 8. Means of Estimates of Period and Cohort Effects from 1000 Simulations by P: True Age Effects Only 
 

 
 
 
 
 




