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The expansion of human life in the past century (1; 2) and its socioeco-
nomic implications have stimulated efforts to analyze and forecast mortality
trends (3). A natural focus of these efforts is the period expectation of life
at birth, e0 (a life expectancy computed from death rates in a particular
period). Mortality change is commonly summarized in terms of trends in
e0, and mortality models are evaluated on their ability to match historical
trends in life expectancy. These uses of e0 gained considerable support from
two recent findings: that e0 has increased at a nearly constant rate in many
industrial countries since 1955 (4), and that since 1840 annual world record
female e0 has also increased at a nearly constant rate (5). Some have argued
that such constancy is fundamental in analyzing mortality change (6; 7),
and one researcher (8) has extended a simple model (9) to forecast mortality
change. But e0 is only the mean of the distribution of ages at death, and we
show here that the variance of this distribution provides important additional
information. In particular, change in the variance in age at adult death is
not captured by simple models, and constrains how we should conceptualize
and analyze mortality change.

This paper is organized in four parts. First, we discuss the change in
the age distribution of period life-table deaths at very young versus older
ages, and show that historical increases in e0 in the industrialized countries
have been accompanied by equally striking decreases in the variance of the
age of adult death. These trends show clearly that mortality decline over
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time has compressed the variance between individuals at the same time as it
has increased average life expectancy. Second, we show how the variance in
age of adult death can be approximately computed for any reasonable model
of mortality rates, and illustrate this with three commonly used models,
the Gompertz, the logistic, and models with multiplicative frailty. We also
show that any generalization of the Bongaarts-Vaupel translation argument
yields an unchanging variance in the age at adult death. These results imply
that the Bongaarts model does not capture a major qualitative aspect of
mortality change in many industrialized countries. Fourth, we present results
on world-record trends in the variance in age of adult death, and discuss the
implications of our results for understanding secular mortality change.

Our focus here is on the variability at age of death using period distri-
butions of the age at death. Our results are related to work on the “rect-
angularization” of the survivorship schedule (10; 11) and on the existence of
a maximum age at death (12; 13; 14), questions which explore the possible
limiting forms of the distribution of age at death. Our analysis makes no
assumptions or deductions about such a limit, but aims to illuminate the
nature and significance of trends in the variability of age at death.

Distributions of Age at Death

The age pattern of life table deaths in any period is found from mortality rates
µ(a) by age a in that period. The survivorship l(a) = exp{−

∫ a
0 ds µ(s)}, and

the probability density of death at age a is φ(a) = µ(a) l(a). Figure 1 (a)
displays this density for Swedish females in 1999, illustrating the early spike
at due to infant and child deaths and the much larger probability of death at
much older ages. The majority of deaths occur at ages much later than infant
and early childhood, a qualitative pattern typical of industrialized countries
in the past half century and more. To focus on the older ages at which most
death occurs, we choose a cutoff age A which separates infant and early
childhood deaths from later deaths. A suitable value of A lies in the range of
ages at which probabilities of death are near their minimum, but is otherwise
arbitrary. For choices of A = 10 and 20 years, Figure 1 (b) shows that the
proportion of female deaths over age A in Sweden has been over 92% since
1940; a similar pattern obtains for most industrialized countries. In the rest
of this paper we use A = 20 years; changing the cutoff to age 10 has little
effect on our results. Taking some literary license, we refer to deaths at ages
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over A as “adult” deaths, and earlier deaths as “young” deaths.

Decomposing Life Expectancy

How do young deaths (at ages ≤ A years) and adult deaths (at ages > A)
contribute to the average age at death in the period life table? Write T for
the random age of death of an individual in a hypothetical cohort following
a period life table. Let p−, p+ be the probabilities of young death (T ≤ A)
and adult death (T > A) respectively. Then

e0 = p− e− + p+ e+,

where e−, e+ are (conditional) average ages of death for those who die young
or die as adults, respectively. In the industrialized countries in the last five
or six decades, e− is much below 1 year, and p− is well under 10%, so the
main determinant of e0 is the timing of adult death. Of course, declines in
young deaths still matter to e0, but their effect is proportional to the value
of e+. Consistent with this observation, Wilmoth and Horiuchi (10) used
different methods to show that mortality change at adult ages has been the
main contributor to changing e0 in recent decades.

Decomposing Variance in Age at Death

Consider again random ages at death T in a hypothetical cohort following a
period life table. The variance of age at death can be written

Var(T ) = p− V− + p+ V+

+ p− (e− − e0)
2 + p+ (e+ − e0)

2, (1)

where V−, V+ are (conditional) variances of age at death for those who die
young or die as adults, respectively. For the industrialized countries, only
the second and third terms matter. The first term is small because both its
components are small, and the last term is small because e0 has become in-
creasingly close to e+. The third term contributes substantially only because
e− is small: this difference is not informative about substantive variation in
the adult ages at which most deaths occur. This argument is illustrated by
calculations of the contributions in equation (1): we illustrate these in Figure
2 for Swedish females over the period 1920 to 2003. Thus the term in that
most matters to understanding variability in age at death is V+. Consistent
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with this analyis, (15) show that differences between countries in the distri-
bution of age at death are increasingly determined by differences in V+ rather
than in e0. From here on, we measure variability in age at death by V+ with
a cutoff age of 20 years, or equivalently the standard deviation S20 =

√
V+.

Trends in Variance in Age at Adult Death

How has the variance in age at adult death changed over time, especially
in comparison to changes in e0? To provide historical perspective, we plot
S20 against e0 for Swedish females in three epochs, an early period from
1751 to 1891 (Figure 3(a)), a middle period from 1892 to 1953 (Figure 3(b)),
and the recent period from 1954 to 2003 (Figure 3(c)). In the earliest period
(Figure 3 (a)) e0 and the variability S20 in adult death changed in apparently
chaotic fashion. Although e0 changed over a large range, changes in S20 were
relatively modest. In the middle period (Figure 3 (b)) the chaotic change
of the early period was replaced by a striking pattern in which S20 declined
steadily whereas e0 increased steadily. In this middle period, variability S20

fell by 49% over a much larger range than in Figure 3(a), and did so in almost
perfect negative correlation with e0, which increased by 42%. The correlated
pattern of declining variability and increasing life expectancy continued but
slowed in the final period (Figure 3 (c)), the past five decades. Here S20

declined by 7% while e0 increased by 11%.
Figures 4(a) and (b) plot S20 against e0 for sexes-combined period mor-

tality data for several industrialized countries over the past five decades.
Considerable heterogeneity is apparent. Japan’s experience since 1955 looks
much like that of Sweden during 1892 to 1953, a long and steady decline
in variance coupled with gains in e0 (Figure 4(a)). Denmark, shown on the
same axes, actually experienced a net rise in S20 overall, although its sched-
ule almost looks like a level projection of Sweden’s. Other countries, like
France, the U.S., and Canada until about 1980, appear to have followed no
clear trend at all since 1955 (Figure 4(b)). The remarkable, sudden diver-
gence of Canada from the French path seems to be unique among countries
in our dataset, cannot be linked clearly to discrete events in national health
policies, and remains a provocative subject for future research.

Interpreting these patterns with a single story is difficult. Different
countries may be at different stages of a common variance transition (Japan
vs. Sweden); they may have different “background” levels of variance (Den-
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mark vs. Sweden, U.S. and France vs. others); and they may break with
past trends altogether (Canada vs. France). In all cases the variability S20

does change over time, with the smallest change being about 3% and the
largest about 8%. Our results on change in S20 are consistent with those of
Wilmoth and Horiuchi’s (10), who showed that interquartile ranges of the
age at adult death in have narrowed in recent decades in the industrialized
countries.

Our central finding is that temporal changes in mortality have substan-
tially altered both life expectancy e0 and the variability in the age at adult
death, S20. Over the long historical period, secular change has compressed
the variation between individuals in age at death, just as it has increased life
expectancy. Changes in variance in the age at adult death continue in most
industrialized countries. Clearly these patterns should be reflected in useful
models of mortality change. To understand whether and how they can be
included in models of mortality change, we now turn to the manner in which
commonly used mortality models describe variation in the age at death.

Models of Adult Mortality

How is the variance in age at adult death described by mortality models?
The most celebrated model of adult age-specific mortality is the Gompertz.
Recent work (16; 17) suggests that a logistic model describes old-age mor-
tality more accurately than does a Gompertz model. The logistic can also
be seen as a result of a model in which Gompertz mortality is modified by
a multiplicative frailty (9). Frailty, if it occurs in this form, should clearly
contribute to the variability in age at death. While it can, we do not find this
channel to be an entirely compelling account of the historical trends in S20.
Overall, we will show that traditional models are not well-equipped to deal
with variance, and we find that disturbing in light of its clear importance.

We now present analytical results showing how the variance in age at
adult death depends on the parameters of mortality models. We consider in
order a general mortality model, the Gompertz, the logistic, a general model
with multiplicative frailty, and the Gompertz with multiplicative frailty. We
close this section with an analysis of models of mortality translation (which
we explain below) and of a more flexible framework that can be seen as a
generalized Gompertz model, the Lee-Carter model (18).
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General Mortality Model

Suppose that adult mortality µ(a) is an increasing positive function of age
a. In terms of cumulative mortality M(a) =

∫ a
0 ds µ(s), the survivorship

l(a) = exp{−M(a)} falls to zero as age a increases. The distribution of age
at death for adults, φ(a) = µ(a) l(a), increases at young adult ages and falls
to zero at very high ages. We indicate derivatives with respect to age by a
dash, so

dφ

da
= φ′ = µ′ l + µ l′.

The change in the value of φ between age a1 and a slightly larger age a1 + x
is the sum of two terms. The first, x µ′(a) l(a), represents an increase in the
probability due to the increase with age of the death rate µ; the second,
x µ(a) l′(a) = −x µ2(a), represents a decrease in the probability due to the
decrease with age of survivorship l(a). At the modal age at death, a0, these
changes balance and

µ′(a0) =
dµ

da
= µ2(a0). (2)

If the mortality curve steepens, the mode will shift to a younger age.
Near the mode a0, the age-at-death distribution φ(a) can be approxi-

mated (via Taylor expansion) by a quadratic function,

φ(a) ' φ(a0)

(
1− (a− a0)

2

2 σ2

)
, (3)

where

σ2 =

(
φ(a0)

|φ′′(a0)|

)
=

µ(a0)

|µ′′(a0)− 2 µ3(a0)|
. (4)

Here φ′′(a0) is the (negative) second derivative of φ(a) evaluated at the mode
a0 and µ′′(a0) is second derivative of µ(a) at the mode a0. When the dis-
tribution φ(a) is reasonably sharply peaked around the mode a0, we can
approximate it by a normal distribution,

φ(a) ' φ(a0) exp

(
−(a− a0)

2

2 σ2

)
. (5)

This approximation provides a useful and often accurate estimate of the mo-
ments of φ(a) – we use it here and also check its accuracy by numerical
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computation (***REF*** asymptotic expansions). In particular, the vari-
ance in age at adult death is approximately given by the σ2 appearing in
equation (4). This variance depends on the curvature of the mortality func-
tion, i.e., whether the slope of mortality steepens or shallows around the
modal age. If the curve steepens, then µ′′(a0) > 0 and the variance is smaller
than for a curve that shallows at the mode.

The Gompertz Model

We write the Gompertz mortality function as µ(a) = µ0 eβ a. Equation (2)
shows that the mode satisfies

µ(a0) = β,

so the modal age at death is

a0 = (1/β) log(β/µ0). (6)

We expect a0 to decrease if β increases, a property which holds for (6) so
long as a0 > (1/β) which is true for any plausible human mortality pattern.
The probability density of age at death for the Gompertz model is

φ(a) = µ(a) exp

(
−µ(a)− µ0

β

)
.

Because the Gompertz mortality rises exponentially, the density φ falls steeply
at very high ages.

The variance in adult age at death for the Gompertz model is found
from equation (4) to be approximately

σ2 ' 1

β2
. (7)

Thus the Gompertz variance in age at death depends (at least approximately)
only on the slope parameter β and not on µ0. It is possible to obtain an
exact expression for the variance by analytical integration in terms of special
functions but the results are not especially illuminating. However, we have
computed numerically the exact variance for a range of values of β and µ0

that are appropriate for twentieth century human mortality. We find that
the exact value of σ depends only weakly on µ0 and that equation (7) is an
accurate approximation. It follows that a Gompertz model can only describe
changes in the variance of the adult age at death if the Gompertz slope
parameter β changes with time.
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The Logistic Model

We write the logistic model for mortality as

µ(a) =
eβ a

C + eβ a
,

and integration shows that the probability density of deaths is

φ(a) = (C + 1)1/β eβ a

(C + eβ a)(1+1/β)
.

This density falls as a simple exponential e−a for high ages, much more slowly
than for the Gompertz model. For the logistic, the modal age at death is

a0 =
1

β
log (βC), (8)

and the approximate variance from equation (4) is found to be

σ2 =
(1 + β)

β2
. (9)

Thus the logistic also displays the remarkable property that the variance in
age at death depends only on the slope parameter β. It follows that a logistic
model can only describe changes in the variance of the adult age at death if
the slope parameter β changes with time.

Note that if we fit a Gompertz model and a logistic model to a particular
data set, the value of β must be similar in both (compare the two models near
a = 0 which here indicates the start of adult age), so the logistic model would
imply a slightly larger variance in age at adult death than the Gompertz. We
expect this difference because the density φ for the logistic model shallows
as age increases (see the discussion after equation (5)).

General Mortality, Multiplicative Frailty

Following Vaupel (9), suppose that every individual has a random frailty Z
and that g(z) dz is the probability that Z takes values between z and z + dz.
Mortality is determined by frailty Z and a baseline mortality function µ(a)
as the product Z µ(a). Conditional on frailty, the probability distribution of
age at death is

φ(a|Z) = Z µ(a) exp(−Z M(a)),
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with M(a) =
∫ a
0 ds µ(s). The usual specification of a frailty distribution

assumes that average frailty is 1, and that the distribution of frailty has
some variance s2 > 0. The population probability distribution of age at
death is the average over frailty,

φ(a) = E φ(a|Z) =
∫

dz g(z) φ(a|z). (10)

Relative to individuals with a frailty of 1, less frail individuals will have a
higher modal age at death and a larger variance in age at death.

We now obtain the mode and approximate variance of the general
model. To simplify the equations below, it is convenient to define the follow-
ing averages with respect to frailty,

hj(a) = E [Zj e−Z M(a)], for j = 1, 2, 3. (11)

In the population, the modal age at death satisfies the condition

µ′(a) = µ2(a)
h2

h1

. (12)

Note that if every frailty were set equal to 1, we would have h2 = h1 and
this equation would reduce to our earlier equation (2). To approximate the
variance in age at death, we use equation (4) and obtain

φ′′(a0) = h1 µ′′ + µ3

{
h3 − 3

(
h2

2

h1

)}
, (13)

where the hi are evaluated at the mode a0, and then set

σ2 = φ(a0)/|φ′′(a0)| = h1(a0)µ(a0)/|φ′′(a0)|.

In these expressions, if every frailty is set equal to 1, we have h3 = h1 and
the variance σ2 reduces to the value in equation (4).

General Mortality, Gamma Multiplicative Frailty

The expressions we present above are not as illuminating as one might hope
about how frailty would affect the mode or the variance in age at death . To
obtain a qualitative sense of the effect of frailty, we consider the case when
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frailty Z follows a gamma distribution (9). In this case, the probability that
Z lies between w and w + dw is assumed to be g(w) dw with

g(w) =
kk

Γ(k)
wk−1 e−k. (14)

The average frailty is 1 and the variance of frailty is Var(Z) = s2 = (1/k).
This distribution is convenient, as Vaupel et al. pointed out, because we can
use it with any baseline mortality µ(a), to find an explicit expression for the
average distribution of age at death in equation (10), in the form

φ(a) = µ(a)

(
k

(k + M(a))

)k+1

. (15)

We can straightforwardly differentiate the above φ(a) to find that the
modal age at death is defined by the condition

µ′ =

(
1 + s2

1 + s2M

)
µ2. (16)

Notice that if all individuals have the same frailty so that s2 = 0, the equation
for the mode reduces to the simpler equation (2). Qualitatively, the denom-
inator on the right describes how frailty alters the rate of change of average
mortality and survival depending on how much selection acts against more
frail individuals. The magnitude of selection depends on both the variance
s2 in frailty, and the cumulative mortality hazard M(a). Strong selection
will act to decrease the modal age at death.

At the modal age, the second derivative of the age distribution of deaths
can be found by differentiation and then substituted into the approximation
equation (3) to obtain the variance in age at death,

σ2 =

(
φ(a0)

|φ′′(a0)|

)
,

=
µ(a0)

|µ′′(a0)− µ3(a0) {(1 + s2)(2 + s2)}/{(1 + s2M(a0)2)}|
. (17)

Note again the selection effect in the denominator of (15) in which s2 is
multiplied by the cumulative mortality M(a0) which has occurred at ages
below the mode. Strong selection (via a large M(a0) will combine with
variance in frailty s2 to reduce the denominator of equation (17) and thus to
inflate the variance σ2 in age at death.
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Gompertz Mortality, Gamma Multiplicative Frailty

The gamma frailty model provides a little insight into how multiplicative
frailty affects the mode and variance of age at death. But we can learn
much more by combining a Gompertz baseline mortality µ(a) = µ0 eβ a with
multiplicative gamma-distributed frailty. The modal age at death for this
model is found using equation (16) with the Gompertz mortality, and yields
the condition

µ(a0) = (β − s2µ0),

which explicitly gives us the mode as

a0 = (1/β) log

(
β

µ0

− s2

)
. (18)

Compare this with equation (6) for the standard Gompertz and observe that
frailty acts to reduce the modal age at death.

The variance in age at death is obtained using equation (17) and equa-
tion (16) and a little algebra, and yields the remarkably simple result that

σ2 =
(1 + s2)

β2
. (19)

Comparing this with equation (7) for the standard Gompertz shows that
frailty simply amplifies the variance in age at death. An important conclusion
is that a Gompertz model with gamma frailty can only describe changes in
the variance of the adult age at death if either the Gompertz slope parameter
β or the variance s2 in frailty or both change with time.

Mortality Translation

The model of mortality translation due to Bongaarts and Feeney (7) provides
an appealingly simple description of mortality change. We can describe it
simply in terms of a hypothetical cohort following a period life table. Let T1

be the random age at death of an individual in this cohort in period t1, e.g.,
t1 = 1990. In a later period t2, suppose that the effect of mortality change
between the two periods is completely described by delaying each death by
the same amount. Thus, each random age at death T1 in the first period
is replaced in the later period by the random age at death T1 + D, where
D > 0 is fixed. We see at once that the average age at death increases from
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e01 = E T1 in period t1 to e01 + D in the later period t2. If we shift the mean
age at death at some fixed annual rate, we have found a model of mortality
change that describes a constant trend in e0. We use the term mortality
translation for any such model.

Notice that translation only affects the mean age at death and not
its variance. Shifting every random age at death from T1 to T2 = T1 + D
for a fixed D results in a constant variance, Var(T1) = Var(T2). In fact,
translation leaves unchanged all the central moments of the random age at
death. Put geometrically, translation necessarily implies that the shape of
the distribution of age death does not change.

Mortality translation is appealing because it can be used with any mor-
tality model. Bongaarts and Feeney (7) and Bongaarts (8) used translation
for a Gompertz and a logistic model. Vaupel (9) used a Gompertz model in
essentially the same way although he did not explicitly refer to translation.
Take any reasonable adult mortality function µ(a). In period t1 suppose that
the corresponding mortality µ1 > 0 for ages greater than some cutoff age A1.
In a later period t2 define adult mortality to be a translation of the original
mortality schedule,

µ2(a) = 0, for A1 ≤ a < (A1 + D),

and
µ2(a) = µ1(a−D), for a ≥ (A1 + D).

It follows automatically that the probability distribution of ages at death is
also translated: if φ1 and φ2 are the distributions in the two periods, then

φ2(a) = φ1(a−D), for a ≥ (A1 + D).

This is simply an alternative statement of the translation of the random age
at death T1 distributed as φ1 to T1 + D.

It is obvious that mortality translation, by construction, cannot de-
scribe changes in the variance in the probability distribution of age at death
(or for that matter, of other central moments of φ related to the shape of the
distribution, such as skewness or kurtosis).

Generalized Gompertz: Lee-Carter

Lee and Carter (18) proposed a parsimonious, three-parameter model that
explains temporal trends in mortality well in industrialized countries (19).
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Using the singular value decomposition, they estimate

log µ(a, t) = α(a) + β(a) k(t), (20)

where µ(a, t) is the mortality at age a in period t, α(a) and β(a) are constant
age profiles, and k(t) is a random walk with negative drift.

The age profile α(a) is an average and so will be approximately Gom-
pertz or logistic in shape. But the β(a) profile is not necessarily constant
with age, as it would be in a Gompertz model with a fixed age slope over
time. Indeed, fits of β(a) typically reveal that mortality declines at different
rates at different adult ages across industrialized countries (20). In conse-
quence the slope and curvature of mortality in this model are free to evolve
over time, leading in general to changes in the variance of age at death.
The singular value decomposition of Equation (20) produces optimal fits of
age-specific mortality rates, however, not necessarily of the moments of the
distribution of ages at death.

Implications and Discussion

Mortality Models

Over the last two centuries, the variance in age at adult death, measured
here by the standard deviation S20, has declined by about 50%. If we used a
Gompertz model to describe period mortality at ages over 20, then the slope
of the Gompertz model would have to increase by about 40% in order to
replicate observed trends in S20. A logistic model for period mortality would
require a larger increase, about 50%, in the slope. It is true that in the past
50 years declines in S20 have been much slower, but they are still about 10%.
Corresponding increases in the slope of the Gompertz model are about 11%,
and for the logistic about 16%.

These findings, that the Gompertz slope cannot be constant over time
and still match trends in variance, stand in stark contrast to traditional
interpretations and uses of the Gompertz model. A common perspective is
that the Gompertz slope is a constant parameter, similar even across many
species, that is dictated by biology, while the intercept may vary according
to external influences (21). We believe the evidence suggests that instead,
both nature and nurture must affect the Gompertz slope, at least in human
populations and potentially in other species.
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Mortality translation models do not allow any change in the variance
of adult death and should not be used to capture changes in the age pattern
of deaths, even if they describe changes in e0. It is curious that translation
models nonetheless provide a good statistical fit to mortality patterns in
industrialized countries since 1950 (8). Our results suggest that analysis
of the age distribution of deaths provides an important diagnostic test for
mortality models that should be incorporated into active use.

The addition of multiplicative frailty to a Gompertz model does not
address changing variances in age at death, unless we assume that frailty
distributions have been changing quite rapidly over time. Temporal change
in frailty has not been a feature of mortality models, and it is not clear why
the distribution of such frailties would narrow over time.

By construction, the Lee and Carter (18) forecasting model can predict
changes in the variance in the age at death. In practice, we have found that
its implicit forecasts of S20 appear to be extrapolations of average trends
over the forecast interval. This is consistent with the spirit of the Lee-Carter
framework and mirrors patterns in Lee-Carter forecasts of e0. But since the
historical paths of S20 have been considerably more convoluted than those
of e0 in every industrialized country, the simple extrapolation of the long-
term average trend in S20 produced by Lee-Carter seems incongruous. We
conclude that while the flexibility of Lee-Carter makes it a valuable model
of mortality, it does not capture trends in variance as well as we believe they
should be.

Components of Variability in Ages at Death

The variance V+ = S2(20) in age at death which we study here is a sum of
variability due to all individual differences. Suppose that individuals can be
divided into groups (using e.g., socioeconomic risk factors, genes, and so on)
and we partition the total variance into a sum of within-group variances and
between-group variances. Equation (1) is an example of such a decomposi-
tion. Values of S20 provide significant constraints on any such decomposition.
In particular, a change (or lack of it) in S20 over a period of time implies di-
rectly a consistent change in either within-group variance or between-group
variance.

As one example, persistent educational differences in adult mortality
have been documented over long periods of time (22). More broadly, so-
cioeconomic gradients in mortality have existed throughout this period, and
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remain significant today. In this long run, both e0 and e+, the conditional
expectation of life after reaching adult ages, have risen, and S20 has declined.
If socioeconomic differences in mean age at adult death have stayed roughly
constant over time, then the variance within groups must have declined be-
cause the overall S20 has declined. A precise decomposition of population
variability by subgroups should be possible along the lines of this argument.
Over the past half century, we have found (Figure 4) differences between
countries in the pattern of change of S20 relative to e0. These provide a
basis for a comparative analysis of trends in age at death by socioeconomic,
genetic, or other factors.

Long-Term Trends in Ages at Death

A striking result about long run mortality change is the demonstration by
(5) that world-record high e0 has risen at a remarkable linear rate over the
past 160 years. Such uniformity suggests that upper bounds on life span,
prognosticated and then consistently broken throughout this period, are not
as clear as some currently believe, and that the pace of human develop-
ment and achievement measured in this way has been rapid and surprisingly
steady across several distinct periods of socioeconomic and epidemiological
transitions.

Elsewhere, we describe how long-term trends in the record-low vari-
ance paint a very different picture regarding the gains in human well-being
along the dimension of mortality (15). True, progress against the Gompertz
slope, has indeed been achieved, contrary to the opinions of those who may
have viewed it as immutable. But long-term gains have come more in fits
and starts rather than continuously, and this highlights the remaining chal-
lenges, as does the considerable heterogeneity across countries this century in
progress against variance. We do not fully understand the sources of variance
in life spans, nor the underlying health inequalities they presumably reflect,
and this is a problem for policy as well as for modeling and forecasting mor-
tality.
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