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Abstract 

 

 
I study how mortality at a given age depends on cohort and period mortality 

shocks using data for five European countries. I define cohort mortality 

shocks as deviations from trend in cohort’s own infant and early childhood 

mortality. Period shocks are defined as deviations from trend in early 

childhood mortality and in surrounding cohorts’ period mortality. I find that 

cohort mortality shocks are essentially unrelated to later mortality. Period 

shocks are strongly correlated with mortality at all ages, but at older ages the 

association weakens. The results are similar for men and women. The results 

suggest that i) cohort’s early life experiences may have only little influence 

on later mortality; ii) period conditions seem to dominate mortality 

variation; and iii) at older ages the proportion of mortality variation not 

explained by either cohort or period conditions increases.  
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1 Introduction 
Understanding the importance of both cohort’s early life experiences and period conditions to later 

mortality is crucial for understanding the historical mortality decline and for predicting future 

developments in mortality. Prior research suggests that early life conditions may be linked to adult 

mortality (Elo and Preston 1998), but separating these effects from the effects of period conditions is 

challenging. Consequently, there is an ongoing debate on whether mortality at older ages is mainly 

determined by cohorts’ early life experiences or period conditions (Barker 1995, Finch and Crimmins 

2004; Barbi and Vaupel 2005; Costa and Lahey 2005; Catalano and Bruckner 2006). 

Cohorts born within a short period of time may have quite different mortality rates at a given age. The 

important question is what explains these cohort differences. The theory of fetal and infant origins of 

adult disease (Barker 1992, 1994; Eriksson et al. 1999; Barker et al. 2002) predicts that the differences 

may, at least partly, be explained by cohorts’ early life experiences, such as quality of nutrition (Fogel 

2004; Sparén 2003) or exposure to disease in infancy and early childhood (Bengtsson and Dribe 2000; 

Almond 2006). Some recent research, however, suggests that period conditions may play a larger role 

than cohort experiences in determining mortality (Barbi and Vaupel 2005).  

In this paper I study how variation in mortality at a given age depends on cohorts’ early life conditions 

and on period conditions using historical mortality time series for Denmark, England and Wales, Finland, 

Netherlands and Sweden. I use cohort mortality shocks, defined as deviations from trend in cohort’s 

mortality at ages 0 and 1-4, as proxies for early life conditions. I use period mortality shocks, defined as 

deviations from trend period mortality at ages 0-4 and in surrounding cohorts’ period mortality, as the 

measure for period conditions. As the dependent variable I use the deviation from trend in mortality over 

cohorts for a given age.  

In previous research three approaches have been used to estimate what are called cohort and period 

effects: i) the age-period-cohort (APC) methodology; ii) an approach to evaluating the effect of one single 

shock such as famine or epidemic; iii) an approach in which mortality rates are compared across and 

within cohorts over long periods of time, with no consideration of specific shocks. These three 

approaches answer essentially different questions.  

The APC approach, pioneered by Mason et al. (1973) and further developed by Glenn (1978), Fienberg 

and Mason (1978, 1985) and Wilmoth (1990), simultaneously estimates age, period and cohort effects. 

However, this approach cannot analyze the particular aspects of factors associated with period or cohort 
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which produce the effects. Age, period and cohort are only indicator variables that are proxies for the 

effects. Thus with APC approach one can describe the mortality surface over the three dimensions of age, 

period and cohort, but can not study how these effects are related to early life experiences.
2
  

Another approach explicitly identifies a cohort mortality shock and compares the mortality of a cohort 

subject to the shock to the mortality of surrounding cohorts not marked by this event. Such shocks may be 

famines or disease epidemics. Studies on 1866-68 Finnish famine (Kannisto et al. 1997) and 1944-45 

Dutch famine (Painter et al. 2005) have found no association between old-age mortality and nutrition 

early in life. The survivors of the 1941-42 Leningrad siege may have had elevated cardiovascular disease 

mortality (Sparén 2003), but the results are potentially confounded by differentials in surviving 

probabilities (Croft 2004; Bell 2004). Results on the effects of exposure to disease early in life are more 

robust; Bengtsson and Dribe (2000) have found strong evidence that disease load during the first year of 

life is associated with higher mortality later in life, and Almond (2006) finds elevated disability rates for 

those in utero during the 1918 influenza. These studies provide valuable information on the effects of 

single shocks and may indicate that diseases matter more than nutrition (Fogel (2004), however, attributes 

much of the declines in old age mortality to improved nutrition). The analysis of rare or unique events in 

history, however, is not well suited to comparing the influence of period and cohort, and can not tell us 

whether cohorts who experience high mortality early in life are, on average, suffering higher or lower 

mortality later in life. 

The third approach, which is used in this study, compares mortality rates across and within cohorts over 

long periods of time. The approach has a long history, dating back to at least Kermack et al. (1934). Finch 

and Crimmins (2004) applied this methodology to compare Swedish cohorts born between 1751 and 

1927, and concluded that mortality declines among the old and young begin in the same cohort, and 

attributed declines in old-age mortality largely to reduced exposure to inflammation in early childhood. 

The conclusions were not based on a statistical analysis of the data, however, but on a visual inspection of 

a few graphs with highly aggregated data. Barbi and Vaupel (2005) compared mortality rate correlations 

both within and across cohorts for the same data, and found that both correlations are positive, large, and 

highly significant, and that within-cohort correlations (cohort effects) are smaller. Moreover, the within-

                                                 
2
 The APC approach also suffers from an identification problem: age, period, and cohort are linearly dependent, so 

the three effects can not be identified in a regression model. One must pose identifying restrictions on the 

parameters, and the results are very sensitive to these restrictions (e.g. Yang Yang 2004, Smith 2004). Recently 

there have been attempts to find less sensitive APC estimators, most notably the intrinsic estimator (Fu 2000; Knight 

and Fu 2000; Fu, Hall and Rohan 2004; for applications see Yang 2004, 2008). But also in this approach no effects 

or shocks are measured – mortality is only described over the three dimensions. 
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cohort correlation between infant and old age mortality was lowest when infant mortality was high, which 

is contradictory with the hypothesis that high infant mortality would lead to higher late life mortality. The 

correlations calculated by Barbi and Vaupel may be spurious, however, since both the dependent and 

independent variables are subject to trend
3
.  

In more recent papers Finch and Crimmins (Finch and Crimmins 2005; Crimmins and  

Finch 2006a) study the absolute and relative effects of cohort and period mortality by regressing mortality 

at ages 70-74 on each cohort’s earlier mortality up to age 15 and on period mortality. Using data for four 

European countries, they find that a cohort’s earlier mortality explains 87 to 96 % of mortality variation at 

ages 70-74, and contemporary mortality at ages 0-15 explains only 7 to 68 % of the variation. Crimmins 

and Finch also find that the cohort variables explain more of the mortality variation for women than for 

men, indicating that men are more robust to exposure to infection in early life. These studies suffer from 

two statistical problems. First, all the mortality variables have a downward trend, so the results may be 

spurious
4
. Second, even without the spuriosity problem arising from trends, the estimates for childhood 

mortality variables (measured at ages 0, 1-4, 5-9 and 10-14) could be misleading due to the extremely 

high collinearity between these variables.  

To avoid spurious results, it is important to de-trend the variables before analysis. De-trending also 

significantly reduces the multicollinearity problem. Catalano and Bruckner (2006) focused on cohort 

effects and used ARIMA models (Box and Jenkins 1970) in a study which compared the unexpected 

components in the odds of dying before age 5 and in later mortality, as summarized by life expectancy at 

age 5. Catalano and Bruckner found that higher than expected childhood mortality is correlated with 

lower than expected life expectancy at age 5, and that the association is stronger for men than for women. 

The effects, however, are small: the highest and lowest recorded childhood mortality rates would result in 

1.75 years of difference in life expectancy for men and 1.56 for women (the authors do not report the 

effects for one or two standard deviation shocks). The effects are also subject to large statistical error.  

Catalano and Bruckner do not separate infant and early childhood effects, although exposure to adverse 

conditions at ages 0 or 1-4 could have different effects. As they measure life expectancy at 5, we do not 

know whether the observed correlations mean that high childhood mortality increases mortality over the 

                                                 
3
 Regressing a variable with trend on another variable with trend may yield statistically significant results, 

irrespective of the nature of the variables (the same holds if one calculates the correlation). This is because the 

fundamental assumptions of regression analysis, namely that the variance and mean of the error term are constants 

and the error terms are uncorrelated, are violated. For a discussion on this topic see Hendry (1980).  
4
 See the footnote 3 above.  
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whole life course, late in life, or at ages close to 5. A more serious problem in the study is that life 

expectancies are used for cohorts born as late as 1913. This means that for some countries up to 30% of 

the dependent variable is based on forecasts, and the uncertainty and potential bias arising from forecasts 

is not taken into account. 

To summarize, robust results about the relative importance of cohort and period mortality shocks on later 

mortality are rare. Little is known about the ages at which early life mortality shocks may increase or 

decrease mortality, few studies separate the effects of infant and early childhood mortality shocks, results 

about the relative robustness or resilience of men compared to women are contradictory, and so are the 

results about the relative importance of cohort and period. The goal of this paper is to study  

1) what are the absolute and relative contributions of cohort and period mortality shocks on later 

mortality,  

2) whether cohort shocks at infancy and early childhood have different effects, and 

3) whether men and women respond differently to cohort and period shocks.  

I use a decomposition, breaking observed time series into two unobserved components, trend over cohorts 

and residual. The residual in mortality at a given age is the dependent variable. Residuals in period 

mortality at ages 0-4 and in surrounding cohorts’ mortality are the period shocks, and residuals in cohort’s 

early life mortality are the cohort shocks. The design removes all trends and allows me to answer the 

question “If a cohort had higher/lower mortality than we would expect based on the surrounding cohorts, 

how well does cohort’s mortality early in life explain this, and how well does period mortality explain 

this?”.  
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2 Anticipated influence of cohort and period shocks 
I aim to estimate both the direction and magnitude of the effects of cohort and period mortality shocks. 

The direction of the effect of a period mortality shock is likely to be positive: a shock that increases 

mortality at one age is bound to increase mortality also at other ages at the same period. The influence of 

cohort shocks, however, can be both positive and negative. This is because mortality shocks in early life 

may affect later mortality by selection, scarring or induced immunity.
5
 This section makes explicit the 

predictions of these three pathways.  

First, a cohort mortality shock may act selectively, killing the weakest (I consider cohort mortality shocks 

at ages below 5, so it is unlikely that any shock would kill selectively the more robust ones). An example 

of such a shock could be famine, disease epidemic, or war. The influence of a selective mortality shock 

on later mortality would be positive, lowering mortality. Second, a cohort mortality shock may damage 

the surviving population, resulting in a scarring effect which increases the mortality of the surviving 

cohort. Third, a cohort mortality shock may induce immunity, lowering the mortality for the surviving 

cohort.   

To summarize, conceptually cohort mortality shocks may either increase or decrease mortality later in 

life. Moreover, it is not clear at which ages mortality would be altered by an early life shock, or whether 

the cohort shocks are more important than period shocks. Only empirical evidence, then, can tell us the 

relative importance of cohort and period shocks, direction of the effects, and whether selection, scarring 

or immunity dominates the cohort effect.  

 

                                                 
5
 Preston et al. (1998) have a typology presenting four mechanisms that relate the risk of death in childhood and risk 

of death in adulthood; these are (1) positive and direct, (2) positive and indirect, (3) negative and direct, and (4) 

negative and indirect developed. In the typology of Table 1, selection/culling corresponds to (4), to Scarring to (1) 

and acquired immunity to (3). High risks of death early and late in life may be also indirectly related (2), through 

“correlated environments” so that better access to education and health care in childhood results in higher adult SES 

and lower adult mortality. This study uses data aggregated on national level, so such an effect is intractable.  
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3 Data, variables and methods 

3.1 Data and variables 
I use time series data on numbers of deaths and years of exposure for Denmark (cohorts born in 1835-

1915), England and Wales (1841-1915), Finland (1878-1915), the Netherlands (1850-1915) and Sweden 

(1750-1915). The data quality for these countries is comparatively good. The data source is the Human 

Mortality Database (University of California, Berkeley, and Max Planck Institute for Demographic 

Research 2007).  

The dependent variable is derived from ( , )m x t x− , mortality rate at age x at time t for cohort t-x. Cohort 

mortality shocks are derived from cohort’s own mortality rates at ages 0 and 1-4, denoted by (0, )m t x−  

and (1 4, )m t x− − . Two period mortality shocks are considered; the first is derived from period 

mortality at ages 0-4; the second is derived from mortality rates of cohorts surrounding the cohort t-x. I 

use two older and two younger cohorts as the surrounding cohorts. Thus for cohort t-x at age x I use the 

combined mortality rate of cohorts 2t x− − , 1t x− − , 1t x− + , and 2t x− +  at ages 2x + , 1x + , 

1x − , and 2x − , respectively.  

3.2 Methods 
All the time series considered in this study are subject to downward trend: mortality is and has been 

decreasing at all age groups in the countries that are studied. When studying variables subject to trend the 

variables should be de-trended before conducting a time series analysis. The reason for de-trending is that 

regressing one variable with a trend on another variable with a trend may yield statistically significant 

results, irrespective of the true nature of connections between the variables. This is because the 

fundamental assumptions of regression analysis (uncorrelated zero mean residuals with constant variance) 

may not hold. As a consequence, meaningless regressions with unrelated variables may deliver spurious 

results, and meaningful regressions are difficult to distinguish from meaningless ones (Hendry 1980). 

Moreover, the problem of multicollinearity is markedly reduced if trends are removed. Therefore I de-

trend the series before analysis.  

Before de-trending, I transform all the time series to log scale. I decompose the log of the mortality time 

series into trend and deviation from trend, and model the deviations from trend. I de-trend each of the 

series over cohorts using the Hodrick-Prescott filter (Hodrick and Prescott 1997) with smoothing 
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parameter 100λ = , a standard choice for annual data (Maravall and del Río 2007).
6
 Figure 1 shows the 

variables (original series, estimated trend and residuals) for Sweden for selected ages.  

FIGURE 1 ABOUT HERE 

The outcome variables, shown in Panels 1-2 of Figure 1, are deviations from trend in log mortality at ages 

20 and 80; in the analyses I use all ages from 5 to 89. The Panels 3 and 4 show shocks in cohorts’ 

mortality rates at ages 0 and 1-4, and Panels 5 and 6 show the period mortality shocks (Panel 6 is for the 

surrounding cohort mortality for age group 20). .   

Before regressing the outcome variable on the predictors, I standardize the cohort and period mortality 

shocks. Standardization is done because the magnitude of different types of shocks varies significantly. 

Figure 2 illustrates the estimated regression model.  

FIGURE 2 ABOUT HERE 

The model depicted in Figure 2 is estimated separately for each age 5,6,...,89x = . That means that I 

will estimate 85 coefficients for infant mortality shocks ( 0,

c

xβ ), early childhood mortality shocks ( 1 4,

c

xβ − ), 

period mortality shocks measured at ages 0-4 ( 0 4,

p

xβ − ) and period mortality shocks measured from the 

surrounding cohorts ( ,

p

S xβ ). If cohort mortality shocks were positively correlated with later mortality 

( 0, 1 4,, 0c c

x xβ β − > ) for all or most ages x, then the scarring effect must dominate the selection and 

immunity effects. If mortality shocks were negatively correlated with later life expectancy 

( 0, 1 4,, 0c c

x xβ β − < ) for all or most ages x, then those who survive would be on average less frail than those 

who die as a result of the mortality shocks. Finally, if the magnitude of the cohort coefficients is larger 

than the magnitude of the period coefficients, early life experiences may be more important in 

determining mortality at a given age than period conditions.  

I estimate the coefficients 0, 1 4, 0 4, ,, , ,c c p p

x x x S xβ β β β− −  using four different models, all of which are of the 

general form  

                                                 
6
 Two other smoothing parameters were also analyzed: 6.25λ = , suggested by Ravn and Uhlig (2002) and 

1600λ = , often used for quarterly data. The larger the λ  less there is smoothing, so the estimated residuals did 

change when λ  was changed, but the estimates for the model parameters were essentially unchanged.  
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x x x xY ε′= +β X , 

where xY  is the dependent variable (deviation from trend in log mortality at age x) and xX  is the vector 

of predictors. The first model includes cohort mortality shocks at ages 0 and 1-4 and period mortality 

shocks at ages 0-4, so 0, 1 4, 0 4,( , , )c c p

x x x xβ β β− −=β . The second model replaces the period mortality shock at 

ages 0-4 by period mortality shock in the cohorts surrounding age x at time t, so 0, 1 4, ,( , , )c c p

x x x S xβ β β−=β . 

The third and fourth model estimate separately the cohort coefficients while controlling for the period 

coefficient. For the third model 0, 0 4,( , )c p

x x xβ β −=β , and for the fourth model 1 4, 0 4,( , )c p

x x xβ β− −=β . 

Models 3 and 4 were considered because infant and early childhood mortality shocks may be so 

correlated that joint estimation of the effects 0, 1 4,,c c

x xβ β −  could be inaccurate. The effects, however, 

changed from the effects obtained in Model 1 only marginally. Therefore results from Models 3 and 4 are 

not reported. The cohort coefficients 0, 1 4,,c c

x xβ β −  in Models 1 and 2 were also essentially the same. 

Therefore I will report the full results for Model 1, and period coefficient results for Model 2.  

The models are estimated separately for both genders and for men and women. Autocorrelation in the 

residual is allowed up to lag 3 (that is ~ ( ) with p 3x AR pε ≤ ). The optimal lag was chosen using the 

generalized Durbin-Watson test.  

The models produce 5100 estimates, 85(age) x 4(2 cohort + 2 period coefficients) x 3(both genders, men, 

women) x 5(countries). I summarize the estimates graphically, plotting exponentiated coefficients 

exp( )β  against age. An exponentiated coefficient for, say, cohort mortality shock at age 0 tells us how 

much, on average, mortality at a given age increases/decreases for a one standard deviation shock in log 

mortality at age 0. The coefficients for cohort mortality shocks at ages 1-4 and period mortality shocks at 

ages 0-4 and at surrounding cohorts are interpreted analogously.  
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4 Results 
The results are in three sections. Section 4.1 shows the overall results for Model 1 (cohort mortality 

shocks at ages 0 and 1-4 and period mortality shock at ages 0-4) by country. Section 4.2 shows the results 

for Model 1 and Model 2 by mortality shock. Section 4.3 focuses on gender differences.  

4.1 The effects of cohort and period mortality shocks by country; both 
genders 
Figure 3 shows the effects of cohort mortality shocks at ages 0 and 1-4 and period mortality shocks at 

ages 0-4 on mortality. The dots in the graph show exponentiated coefficients from the Model 1; the 

smoothed lines are locally weighted smoothed regression curves. The interpretation for the dots and lines 

is the following. An estimate, say, 1.03 for age 20 and cohort mortality shock at age 0 

( 0,201.03 exp( )cβ= ) means that one standard deviation shock in cohort’s log mortality at age 0 is 

associated with a 3% increase in the same cohort’s mortality at age 20. Coefficients for cohort mortality 

shocks at ages 1-4 are interpreted analogously. For the period mortality shocks an estimate, say, 1.05 for 

age 20 ( 0 4,201.05 exp( )pβ −= ) means that on average, one standard deviation period mortality shock at 

ages 0-4 is associated with a 5% increase in period mortality at age 20.  

FIGURE 3 ABOUT HERE 

Let us first consider the period shock coefficients (black dots/lines). These are generally above 1, which is 

expected: if mortality increases at young ages, it is likely that it increases also at other ages. The graphs 

also show that i) the link between period mortality at ages 0-4 and mortality at older ages is strongest at 

younger ages; and ii) all the countries show a similar pattern, but for England and Wales the link between 

period mortality at ages 0-4 and mortality at older ages is weaker than in other countries.  

The period mortality shock coefficients are large compared to the cohort shock coefficients. Some 

individual cohort shock coefficients may be as high as 1.03-1.04, but the smoothed regression curve 

shows that overall, both cohort mortality shocks have only little if any effect on later mortality. In all 

countries, the effect of infant mortality shock (red dots/line) are close to 1 at all ages. The effect of early 

childhood mortality shock (blue dots/line) also has very little effect on later mortality at all ages, except 

perhaps at ages 5-15. At these ages, the effect seems to be below 1, indicating that if cohort had a higher 

than expected mortality at ages 1-4, it will have lower than expected mortality at ages 5-15. This result is 

surprising but not inconceivable, and can be due to selection or acquired immunity: For all cohorts, 
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mortality is generally very low at ages 5-15. Thus those few who die at these ages are likely to be very 

frail (wartimes, and accident mortality, may constitute exceptions). If mortality at ages 1-4 happens to be 

higher than on average, then it is plausible that this mortality shock affects especially those who otherwise 

would have lived to age 5 but still died at relatively young ages. If this was true, the selection and culling 

effect would explain the observed association between mortality at ages 1-4 and 5-15. It should be noted, 

however, that the finding is weak, and does not hold in England and Wales.  

4.2 The effects of cohort and period mortality shocks by type of 
shock; both genders 
Figure 4 shows the smoothed effects of cohort and period shocks on mortality by type of shock. The 

results are grouped so that panel 1 of Figure 4 shows the effects of infant mortality cohort shocks, panel 2 

shows the effects of early childhood mortality cohort shocks, panel 3 is for period mortality shocks at 

ages 0-4 and panel 4 is for period shocks in the surrounding cohorts.  

FIGURE 4 ABOUT HERE 

Panels 1 and 2 confirm what was observed in Figure 3. Cohort mortality shocks at age 0 have no 

influence on later mortality. Cohort mortality shocks at ages 1-4 may decrease mortality at ages 5-15, but 

the effect is small (for one standard deviation increase in log mortality at ages 1-4, mortality at ages 5-15 

may be approximately 1% lower). Moreover, England and Wales is an outlier in this respect, showing no 

decreased mortality at ages 5-15 but possibly slightly increased mortality for cohort mortality shocks at 

ages 1-4.  

Panels 3 and 4 show the effects of period mortality shocks. All countries show a similar patter: High 

period mortality at ages 0-4 is correlated with high period mortality at older ages, but the older the age 

group, the weaker the association (panel 3). For England and Wales the association is the weakest. Panel 

4 shows results from a model where period mortality shocks were derived from the mortality of 

surrounding cohorts. For these period shocks, the general picture is the same: at older ages the association 

between mortality at a given age and period mortality shock decreases, but overall the association is 

strong and positive.  
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4.3 Do men and women respond differently to mortality shocks? 
Figure 5 shows the same curves as Figure 4 but broken down by gender. Overall, the results for men and 

women are very similar. Panels 1 and 2, which show the effect of cohort mortality shocks at ages 0 and 1-

4, do not reveal any differences between men and women. The same holds for panel 3, which shows the 

effect of period mortality shocks at ages 0-4: in each country, the estimated curves are close to each other 

for men and women.  

FIGURE 5 ABOUT HERE 

Panel 4, which shows the effects of period shocks derived from the mortality rates of surrounding cohorts, 

there seems to be some differences between men and women: the coefficients for men seem to be stronger 

especially at ages 15-35. Keeping in mind how the period shocks were constructed in panel 4, this might 

reflect wartime mortality: during war, mortality is especially high for men aged 15-35, and the 

unexpectedly high mortality generally applies to all ages in this range.  
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5 Discussion 
Cohorts born within a short time period may have quite different mortality rates at a given age. These 

differences are cohort differences, and may potentionally be explained by differentials in early life 

conditions, or by period fluctuations. This study analyzes how mortality at a given age depends on 

cohorts’ early life experiences and on period mortality conditions. Using historical data on mortality for 

Denmark, England and Wales, Finland, Netherlands and Sweden I find that shocks in infant mortality are 

weakly, if at all, associated with later mortality. Mortality shocks at ages 1-4 are inversely associated with 

cohort’s mortality at ages 5-15, but the effect is not particularly strong..  

Period mortality shocks have much stronger influence on mortality at any given age. I considered two 

alternative ways to define period mortality shocks; the first was based on period mortality at ages 0-4 and 

the second on period mortality at surrounding cohorts. The results were qualitatively the same for both 

formulations: period mortality shocks are positively and strongly correlated with mortality at any age 

between 5 and 89 years, but the association is weaker for older ages. This suggests that at older ages the 

proportion of purely random variation (variation not explained by cohort or period conditions) increases.  

The effects of cohort mortality shocks were similar for men and women. The period mortality shocks 

derived from mortality at ages 0-4 also had similar effects for men and women, but the period shocks 

derived from the mortality of surrounding cohorts had larger effect on men aged 15-35 than on women of 

similar age. This may be explained by wartime mortality, when mortality is especially high for men aged 

15-35, and the higher than normal mortality applies to all ages in this range.  

These results of this study apply most clearly to four of the countries analyzed: Denmark, Finland, 

Netherlands and Sweden. England and Wales, however, is clearly an outlier, having much weaker link 

between period and mortality rates and showing no evidence of decreased mortality at ages 5-15 for 

cohorts which had unexpectedly high mortality at ages 1-4. The most likely explanation for this difference 

is that the first world war and 1918 Spanish influenza increased mortality in England and Wales so that 

for cohorts born in 1880-1895 there was stalling and even decline in life expectancy. These events caused 

disturbances in the mortality dynamics and may have affected the results of this study. In previous 

research these disturbances have been well documented (e.g. Winter 1976). Derrick (1921; in Winter 

1976) even claimed that “the effects of losses during the European War were so great and indefinite as to 

obscure all normal changes”, including changes which might have resulted from early life cohort 

mortality shocks. Of course, the mortality dynamics may be inherently different in England and Wales 

than they are in other countries, but this seems unlikely.  
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The finding that high mortality at ages 1-4 may decrease mortality at ages 5-15 may be due to selection or 

acquired immunity during the mortality shock. For all cohorts, mortality is very low at ages 5-15. Thus 

those few who die at these ages are likely to be very frail (wartimes, and accident mortality, may 

constitute exceptions). If mortality at ages 1-4 happens to be higher than on average, then it is plausible 

that this mortality shock affects especially those who otherwise would have lived to age 5 but still died at 

relatively young ages. If this was true, the selection and culling effect would explain the observed 

association between mortality at ages 1-4 and 5-15. The other explanation, acquired immunity during the 

shock, seems less likely but can not be refuted altogether.  

This study found no significant differences in how men and women respond to early life mortality shocks. 

In previous research Catalano and Bruckner (2006) find some indication that women are more robust than 

men, but Crimmins and Finch (2006b) get the opposite result. The theories which would explain why one 

of the sexes would be more robust to harmful early life conditions are plentiful (Crimmins and Finch 

2006b), but they are not consistent with each other. As the empirical evidence is equally inconsistent, the 

tentative conclusion is that there are no strong differences between the two sexes. 

The results of this paper have important implications on how we should think about mortality declines 

and old-age mortality. Previous research has suggested that early life conditions may be more important 

than period conditions (Finch and Crimmins 2004), or that even if period conditions were more important, 

early life conditions could still play an important role in determining old-age mortality (Barbi and Vaupel 

2005). This study did not find important links between old-age and early life mortality, but did find strong 

period dependencies in mortality rates. This indicates that declines, or more generally changes, in old-age 

mortality are driven by period conditions. It may be that the inconsistencies between these and earlier 

results are due to methodological differences, most importantly the differences in the way trends are 

handled. This study de-trended all the variables, thus losing information about the broad patterns of 

mortality declines but allowing statistically sound estimation of the effects of interest.  

One earlier study which applied similar de-trending techniques but did not consider period influences 

(Catalano and Bruckner 2006) found that early life mortality shocks decrease later life expectancy. It is 

difficult to say what causes the differences between the results of this study and the study by Catalano and 

Bruckner (2006). Potential explanations could be that the high amount of imputed data in Catalano and 

Bruckner biases the results, or that the complexity of ARIMA models (the authors used AR-lags up to 10) 

distort the estimation. It is also worth noting the Catalano and Bruckner get their strongest results in 

England and Wales, which is exceptional in terms of its mortality dynamics (Winter 1976). 
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The results of this study – no increased old-age mortality for cohorts who had higher than expected infant 

and childhood mortality, and strong period dependencies in mortality rates – are consistent with the 

studies finding no increased mortality among those who survived great famines as young children 

(Kannisto et al. 1997, Painter et al. 2005). Other studies, however, have found that disease load in utero or 

during the first year of life is associated with higher disability and mortality later in life (Almond 2006; 

Bengtsson and Dribe 2000). These studies differ from the current one in one important way: both focus on 

epidemics and identify the timing of the epidemics very accurately, whereas in this study all mortality 

shocks were considered together and identified on an annual basis. In future studies about cohort 

influences on old-age mortality it would be important to focus on monthly or even weekly cohorts, data 

permitting. Incorporating information about the quality of nutrition (or proxies for this, such as grain 

prices), disease patterns, and weather conditions might also be useful. Moreover, it would be important to 

consider other outcomes in addition to mortality, such as educational and occupational outcomes, 

marriage market outcomes, and fertility. Almond’s (2006) research indicates that if early life or in utero 

conditions influence cohort mortality, these may be some of the pathways through which the effect is 

channeled.  
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Figure 1. Mortality at ages 20 and 80 (dependent variables), mortality at ages 0 and 1-4 
(cohort mortality shocks) and period mortality at ages 0-4 and at cohorts surrounding 
age 20 (period mortality shocks). Source: Human Mortality Database  
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Figure 2. Illustration of the model. 
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Figure 3. The effects of cohort and period shocks on mortality at ages 5-89 by country. 
Age on horizontal axis, effect (exponentiated coefficient) on horizontal axis.  
 

Black line, black dots: The effect of a period mortality shock at ages 0-4 

Red line, red dots: The effect of a cohort mortality shock at age 0 

Blue line, blue dots: The effect of a cohort mortality shock at ages 1-4 
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Figure 4. The effects of cohort and period shocks on mortality at ages 5-89 by type of 
shock. Age on horizontal axis, effect (exponentiated coefficient) on horizontal axis.  

 
Red=Denmark  Blue=England and Wales  Black=Finland  Brown=Netherlands  Green=Sweden 
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Figure 5. The effects of cohort and period shocks on mortality at ages 5-89 by type of 
shock and gender. Age on horizontal axis, effect (exponentiated coefficient) on 
horizontal axis.  

 
Red=Women  Blue=Men 

 

 
 

 


