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Abstract 

 

Variables measured in longitudinal studies of aging and longevity do not exhaust the 

list of all factors affecting health and mortality transitions. Unobserved factors 

generate hidden variability in susceptibility to diseases and death in populations and 

in age trajectories of longitudinally measured indices. Effects of such heterogeneity 

can be manifested not only in observed hazard rates but also in average trajectories of 

measured indices. Although effects of hidden heterogeneity on observed mortality 

rates are widely discussed, their role in forming age patterns of other aging-related 

characteristics (average trajectories of physiological state, stress resistance, etc.) is 

less clear. We propose a model of hidden heterogeneity to analyze its effects in 

longitudinal data. The approach takes the presence of hidden heterogeneity into 

account and incorporates several major concepts currently developing in aging 

research (allostatic load, aging-associated decline in adaptive capacity and stress-

resistance, age-dependent physiological norms). Simulation experiments confirm 

identifiability of model’s parameters.   
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1. Introduction 

Demographic studies show that hidden differences in susceptibility to death 

among individuals in a population substantially affect the shapes of the mortality rates 

at late ages [11,12]. Ignoring the presence of such heterogeneity (e.g., unobserved 

covariates) results in underestimating regression coefficients in the Cox’s proportional 

hazard model. Hidden variability in other longitudinal characteristics may lead to 

erroneous conclusions concerning biological regularities of aging-related processes. 

For example, the average age trajectories of physiological indices may be biased 

because of effects of mortality selection. For the same reason, the evaluated decline in 

average resistance to stress can look slower, or become not visible. Hidden 

heterogeneity may also affect average trajectories of allostatic load, forces of 

homeostatic regulation, “optimal” trajectories of physiological state, magnitudes of 

external disturbances, etc.  

Many models of hidden heterogeneity in susceptibility to death used in 

demography and biostatistics are identifiable. It means that distribution of unobserved 
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heterogeneity, regression coefficients and baseline hazard can be evaluated from the 

data [3]. Models of longitudinal data include description of dynamic properties of 

basic variables and their connection to mortality. Therefore, they are more 

complicated than mortality models traditionally used to capture unobserved 

heterogeneity in the populations (e.g., frailty, random effects, or latent variable 

models). To our knowledge, there are no results concerning conditions of 

identifiability in models of heterogeneity for longitudinal data. However, the presence 

of such heterogeneity is a realistic scenario which cannot be simply ignored in 

statistical analyses of longitudinal data. Our simulation studies show that parameters 

of the heterogeneous quadratic hazard model are identifiable in a wide range of 

respective parameters values.  

An important class of models for analyses of longitudinal data uses a 

biologically-motivated assumption on a quadratic form of the hazard rates. This 

assumption is also supported by the evidence from epidemiological studies which 

found the J- or U-shapes of hazards considered as functions of risk factors [15]. These 

models were developed and intensively used in the studies of longitudinal data 

[16,17,18,19,5]. The advantageous feature of this approach is that it allows for 

incorporation of the new findings and ideas appearing in the course of research on 

aging.  

In this paper we introduce the concepts of hidden heterogeneity (discrete 

frailty) into the quadratic hazard model (QHM). The model (referred to as “QHM 

with heterogeneity” throughout the paper) allows us to bring together, interrelate, and 

jointly analyze several fundamental concepts used in different studies of aging-related 

changes in human organisms. These include the concepts of allostatic load [8], 

adaptive capacity (homeostenosis) [10,4] and resistance to stresses [9], as well as age-

dependent physiological norms [13,1,14]. We performed simulation studies to check 

the estimation procedure and performance of the model. Application of the model to 

the Framingham Heart Study (FHS) data on body mass index (BMI) for females 

illustrates the approach.  

2. Model of heterogeneity in longitudinal data 

Let tY  ( t  is age) be a continuously changing vector of random covariates (e.g., 

physiological indices) and Z  be a hidden heterogeneity variable. It is convenient to 

describe evolution of tY  in the form of stochastic differential equation with 

coefficients depending on Z :  

 ( )
01( ) ( ) ( )t t t tdY a Z t Y f Z t dt B Z t dW Y= , − , + , , .  (1) 

Here tW  is a Wiener process independent of the vector of initial conditions 
0t

Y  and the 

random variable Z . The strength of disturbances tW  is characterized by a matrix of 

diffusion coefficients ( )B Z t, . The vector-function 1( )f Z t,  (having the same 

dimension as a vector tY ) has a meaning of age trajectory of physiological state of the 

organisms subject to allostasis [7]. The organisms are forced to follow this trajectory 

by the process of adaptive (homeostatic) regulation. The dependence of this function 

on Z  indicates that mechanisms of allostatic adaptation may differ for groups of 

individuals characterized by different values of Z . The elements of the matrix ( )a Z t,  

correspond to the rate of adaptive response for any deviation of physiological indices 

tY  from 1( )f Z t,  for individuals having heterogeneity variable Z .  

We illustrate our approach by considering the simplest case, when the random 
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variable Z  takes two possible values “0” and “1”, ( 1)P Z p= = . The extension to the 

case with more heterogeneity groups is straightforward. We assume that the 

conditional distribution of 
0t

Y  given Z  is normal with the mean ( )0 0km k t m ,, =  and 

the variance ( )0 0kk tγ γ ,, = , 0 1k = , . Let the mortality rate conditional on tY  and Z  be 

a sum of a baseline ( 0µ ) and a quadratic hazard:  

 ( ) ( ) ( )0 ( ) ( ) ( ) ( )t t tZ t Y Z t Y f Z t Q Z t Y f Z tµ µ
∗

, , = , + − , , − , .  (2) 

For individuals having the heterogeneity variable Z , the baseline hazard 

0 ( )Z tµ ,  characterizes the residual mortality rate, which would remain if the vector of 

covariates tY  follows the optimal trajectory (coinciding with the vector-function 

( )f Z t, ). The matrix ( )Q Z t,  is non-negative-definite and symmetric for both values 

of Z  and for all t  from the respective interval. The vector-function ( )f Z t,  is 

introduced to explicitly characterize age-related changes in the “optimal” 

physiological state corresponding to the minimum of a hazard rate at a given age and 

the value of heterogeneity variable Z . It has a meaning of the age-dependent 

physiological norm for all individuals having the heterogeneity variable Z . It may 

differ from 1( )f Z t,  since the process of allostatic adaptation does not necessarily 

result in the optimal physiological state.  

Such a description corresponds to the assumption that a population under 

study is a mixture of two subpopulations of individuals (numbered “1” and “0”) with 

initial proportions p  and 1– p , respectively. These subpopulations are characterized 

by different dynamics of continuously changing covariates and different mortality 

rates. Let 
0 1 20 i

t

t t t tY Y Y … YY = , , , ,% , it t T≤ <  be a random 1i + -dimensional vector of 

observations of the process tY  at ages 0 1 2 it t t … t, , , , , it t T≤ < . Denote by 

( )0( ) 1
t

t P Z T tYπ = = , >%  the conditional probability that a living individual of age 

t , having a sequence of measurements 0

t

Y% , belongs to the subpopulation 1. The 

evolution of ( )tπ  starts at age 0t  and first continues at the interval 0 1t t t≤ < ; t T< . 

Using the Bayes formula one can show that ( )tπ  satisfies the nonlinear differential 

equation [17]  

 ( )( )
( ) ( ) (1 )

d t
t t t

dt

π
π µ µ= − , ,  (3) 

with the initial condition 0( )t pπ = . Here ( )( ) ( ) (1 ) 1 ( ) (0 )t t t t tµ π µ π µ= , + − , , and 

(1 )tµ ,  and (0 )tµ ,  are as follows:  

( ) ( )0( ) ( ) ( ) ( ) ( ) ( ) ( )k t k t m k t f k t Q k t m k t f k tµ µ
∗

, = , + , − , , , − , + ( )( ) ( )Tr Q k t k tγ, , ,  (4) 

where ( )m k t,  and ( )k tγ , , 0 1k = , , are the mean and the variance of the conditional 

distribution ( )tP Y y Z k T t≤ = , > , which satisfy the following ordinary differential 

equations:  

( )1

( )
( ) ( ) ( ) 2 ( ) ( )

dm k t
a k t m k t f k t k t Q k t

dt
γ

,
= , , − , − , , ( )( ) ( )m k t f k t, − , ,                   (5) 

( )
( ) ( ) ( ) ( ) ( ) ( )

d k t
a k t k t k t a k t B k t B k t

dt

γ
γ γ ∗ ∗,

= , , + , , + , , − 2 ( ) ( ) ( )k t Q k t k tγ γ, , , ,    (6) 

at the interval 0 1t t t≤ < , with initial values ( )0 0km k t m ,, = ; ( )0 0 0 1kk t kγ γ ,, = , = , . The 
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equations (4)-(6) are similar to those derived in [19] in the absence of heterogeneity.  

At the age 1t t= , ( )tπ  jumps because the observation 
1t

Y  brings new 

information about the value of Z . Using the Bayes rule one can easily calculate the 

connection between 1( )tπ  and 
1

1( ) lim ( )
t t

t tπ π
↑

− = :  

 

( )

( )
( )

( )

2
(1 )11

2 (1 )1

2 2
(1 ) (0 )1 11 1

2 (1 ) 2 (0 )1 1

1 1

1

1 1 1 1

( ) (0 )
( )

( ) (0 ) 1 ( ) (1 )

Y m tt

t

Y m t Y m tt t

t t

t t e
t

t t e t t e

γ

γ γ

π γ
π

π γ π γ

− , −

, −

− , − − , −

, − , −

−

− −

− , −
= .

− , − + − − , −

 (7) 

The value 1( )tπ  serves as an initial condition for ( )tπ  evolving in accordance with 

equation (3) at the next age interval: 1 2t t t≤ < ; t T< , and so on. Thus, ( )tπ  evolves 

in accordance with (3) at the age intervals 1i it t t +≤ < ; t T< . The initial values at the 

beginning of each interval are given by the equation:  

 

( )

( )
( )

( )

2
(1 )

2 (1 )

2 2
(1 ) (0 )

2 (1 ) 2 (0 )

( ) (0 )
( )

( ) (0 ) 1 ( ) (1 )

Y m tt ii
ti

Y m t Y m tt i t ii i
t ti i

i i

i

i i i i

t t e
t

t t e t t e

γ

γ γ

π γ
π

π γ π γ

− , −

, −

− , − − , −

, − , −

−

− −

− , −
= .

− , − + − − , −

 (8) 

Respectively, ( )m k t,  and ( )k tγ , , 0 1k = , , satisfy equations (5) and (6) at the 

intervals 1i it t t +≤ < , with initial values ( )
ii tm k t Y, = ; ( ) 0ik tγ , = , 0 1k = , . When 

it t T≤ = ,  

 ( )0

(1 )
1 ( ) ( ) lim ( )

( ) n

T

n t T
t t

T
P Z T t T T tY

T

µ
π π π

µ =↑

,
= , = = − , − = .%  (9) 

Thus, if we introduce 0 0( ) 1
t tt P Z XYπ  

 
 

= = ,%%  where ( )tX I T t= ≤ , the 

trajectory of ( )tπ%  at the interval it t T≤ ≤  can be represented in terms of stochastic 

differential equation with one jump:  

 ( )(1 )
( ) ( ) 1 ( )

( )
t

t
d t t dX t dt

t

µ
π π µ

µ
 ,

= − − − . 
 

% %  (10) 

Here ( )( ) ( ) (1 ) 1 ( ) (0 )t t t t tµ π µ π µ= , + − ,% % . Note that ( ) ( ) ( ) ( )t I T t t I T tπ π> = >% . The 

likelihood function of the data is the product of two terms:  

( )2( ) (1 )

2 (1 )

( )

1 0

( )

2 (1 )

j j
y t m tj ji i

j
tj i

jn jN
j i

Y
j

j i
j i

t
L e

t

γ
π

πγ

− , −

, −


 −


= =



−
= +

, −
∏∏

( )2( ) (0 )

2 (0 )
(1 ( ))

2 (0 )

j j
y t m tj ji i

j
tj i

j

j i

j

j i

t
e

t

γ
π

πγ

− , −

, −


− 






− −
,

, −
  (11) 

and  

 0
( )

1

( )

Tj

jj

N
u du

T jj
j

L T e
µδ

µ
−

=

∫= ,∏  (12) 

where  

 ( )( ) ( ) (1 ) 1 ( ) (0 )j jj jj
t t t t tπ πµ µµ = , + − , ,  (13) 

and  

 ( ) ( ) ( )0( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) j jjj
k t k t Q k t m k t f k t Tr Q k t k tm k t f k tµ γµ

∗
, = , + , , − , + , , ., − ,  

Here N  is the number of individuals, jδ  is the censoring indicator ( 1jδ =  if thj  

individual died at age jT , 0jδ =  otherwise), ( )n j  is the number of measurements of 
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the process tY  for thj  individual. The subscript j  in ( )j tπ , ( )j iy t , ( )jm k t, , ( )j k tγ ,  

indicates that respective characteristics refer to thj  individual. The symbol ( )j iy t  

denotes the value of the random process tY  measured in individual j  at time it .  

3. Results 

3.1. Simulation study for QHM with heterogeneity 

We performed a simulation study to check performance of the model in one-

dimensional case. In computer simulations, we used a discrete-time version of the 

model (1)-(13). We assumed that the baseline mortality in (2) is the Gompertz hazard, 
( )

0

0

( )

0 ( ) ( ) minb k t t
k t a k e µ

µµ −
, = , where 28mint = , 0 1k = , . The quadratic hazard terms, 

( )Q k t, , are taken as linear functions of age, ( )( ) ( ) ( )Q Q minQ k t a k b k t t, = + − . To 

simplify calculations and to reduce the number of parameters, we assumed that the 

function 1( )f Z t,  coincides with the optimal age trajectory of a physiological index, 

( )f Z t, , 1( ) ( )f Z t f Z t, = , . The optimal age-trajectories and the age-related changes 

in the rate of adaptive regulation are taken as linear functions, 

( ) ( ) ( )( )f f minf k t a k b k t t, = + −  and ( ) ( ) ( )( )Y Y mina k t a k b k t t− , = − − , where ( ) 0Yb k > , 

and the strength coefficient ( )B k t,  is assumed to be constant, 1( ) ( )B k t kσ, = . The 

initial distribution of 
0t

Y  is normal with the mean 0( )f k t,  and the variance 2

0 ( )kσ . 

The initial proportion of individuals in the first subpopulation ( 1Z = ) is denoted by 

p . Parameters to be estimated in this model are 
0
( )a kµ , 

0
( )b kµ , ( )Qa k , ( )Qb k , 

( )fa k , ( )fb k , ( )Ya k , ( )Yb k , 0 ( )kσ , 1( )kσ , for 0 1k = , , and p . Age at entry into the 

study was simulated as a discrete random variable uniformly distributed over the 

interval [28 62], . The interval between observations of tY  equals 2 years. The number 

of observations (surveys) is 25. This structure resembles the Framingham Heart Study 

(FHS) data [2]. Parameter values were taken close to the estimates of QHM with 

heterogeneity applied to the FHS data on BMI for females (see section 3.5). We 

simulated 100 data sets, 2800 individuals in each data set (which is approximately 

equal to the number of females in the FHS data), and estimated the discrete model for 

different data sets using the MATLAB’s optimization toolbox [6].  

The results of this simulation study are shown in Table 1 and Fig. 1. Mean 

values, standard deviations and minimal and maximal values of the estimated 

parameters in 100 simulated data sets are presented in Table 1. Estimated trajectories 

of logarithms of baseline hazard, quadratic hazard terms, optimal age-trajectories of a 

physiological index, and age-related changes in the adaptive regulation in two 

subpopulations for 100 simulated data sets with hidden heterogeneity are shown in 

Fig. 1. Table 1 and Fig. 1 show that the estimation procedure correctly evaluates the 

parameters of the model and the means of all parameters are close to their true values. 

Thus, this procedure provides an adequate quality of estimates for a sample size 

comparable to that of the sex-specific FHS data and allows one to reveal hidden 

heterogeneity in such data.  

Table 1 about here 

Fig. 1 about here 
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3.2. Example: Ignoring hidden heterogeneity induces inconsistency in estimates 

To illustrate that ignoring hidden heterogeneity induces inconsistency in 

parameter estimates, we estimated simulated data sets with hidden heterogeneity (see 

section 3.1) using the version of QHM without hidden heterogeneity. This model 

(referred to as “QHM without heterogeneity”) is equivalent to equations (1)-(2) 

without dependence of tY  and µ  on the heterogeneity variable Z :  

 ( )
01( ) ( ) ( )t t t tdY a t Y f t dt B t dW Y= − + , ,  (14) 

 ( ) ( ) ( )0 ( ) ( ) ( ) ( )t t tt Y t Y f t Q t Y f tµ µ
∗

, = + − − ,  (15) 

where 0 ( )tµ , ( )Q t , 1( )f t , ( )f t , ( )a t , ( )B t , and 
0t

Y  are equivalent to respective 

expressions described in the previous section but without dependence on Z . Details 

of the likelihood function and the estimation procedure for model (14)-(15) can be 

found in [20].  

The results of this simulation study are shown in Table 1 (section “No Z ”) 

and Fig. 2. Table 1 illustrates that QHM without heterogeneity produces parameter 

estimates that deviate from respective values of parameters in two subpopulations. As 

a result, the population trajectories of the logarithm of the baseline hazard ( 0ln ( )tµ ), 

quadratic hazard terms ( ( )Q t ), optimal age-trajectories of a physiological index 

( ( )f t ), and age-related changes in the adaptive regulation ( ( )a t ) deviate from the true 

trajectories in two subpopulations (Fig. 2). Thus, ignoring hidden heterogeneity leads 

to incorrect estimates and wrong conclusions.  

Fig. 2 about here 

3.3. Example: Estimates of hidden heterogeneity in data generated by a model with 

different structure 

Simulation studies described above estimated data sets generated by QHM 

with heterogeneity. In real applications, however, the underlying model that generates 

the observed data is usually unknown. Hence, it is important to check whether the 

model (QHM with heterogeneity) can determine hidden heterogeneity in data 

generated by a model with different structure. To check this, we generated data using 

a model with different structure of the process tY  and mortality µ . Instead of a 
quadratic hazard, we used a Cox proportional hazard specification for µ :  

 ( ) ( ) ( )

0 ( ) tQ Z t Y f Z t

tZ t Y Z t eµ µ , | − , |, , = , .  (16) 

In equation (2), we assumed a quadratic function for 1( )f Z t,  instead of a linear one 

used for QHM with heterogeneity (see section 3.1), 
2

1( ) ( ) ( )( ) ( )( )f f min f minf Z t a Z b Z t t c Z t t, = + − + − . All other functions were taken 

equal to those described in section 3.1.  

We generated 100 data sets using this model (referred to as “Cox model” 

throughout the text) and estimated these data sets using QHM with heterogeneity 

described in section 3.1. The results are summarized in Table 2 and Fig. 3. The results 

indicate that, although QHM with heterogeneity fails to estimate the baseline hazard 

0 ( )Z tµ ,  and the function ( )Q Z t,  because of the difference in the structure of 

mortality µ  in two models, it is able to determine hidden heterogeneity in data and it 
distinguishes trajectories of optimal values of a physiological index ( ( )f Z t, ) and 

age-related changes in homeostatic capacity ( ( )a Z t− , ) in two subpopulations. Initial 
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proportions of individuals in these subpopulations (parameter p ) are also estimated 

correctly.  

We also estimated these data using QHM without heterogeneity described in 

section 3.2. The results are shown in Table 2 (section “No Z ”) and Fig. 4. In this 

case, the population trajectories of optimal values of a physiological index ( ( )f t ) and 

age-related changes in the adaptive regulation ( ( )a t ) deviate from the true trajectories 

in two subpopulations (Fig. 4). Thus, the analysis of data generated by the model with 

different structure using the model with hidden heterogeneity improved the accuracy 

of calculations and conclusions.  

Table 2 about here 

Figs. 3-4 about here 

3.4. Example: Heterogeneity may mask the decline in stress resistance 

Let us assume for simplicity that the optimal physiological state ( )f Z t,  does 

not depend on heterogeneity variable and let the conditional mortality rates for the 

two groups of individuals be ( )21(1 ) ( ) ( )t tt Y t Y f tµ µ, , = −  and 

( )20(0 ) ( ) ( )t tt Y t Y f tµ µ, , = − . Then the mortality rate conditional on longitudinal data 

is  

 
( ) ( )

( )( ) ( )

2 2

1 0

2 2

1 0

( ) ( ) ( ) ( ) (1 ( )) ( ) ( )

( ) ( ) (1 ( )) ( ) ( ) ( ) ( )

t t t

t t

t Y t t Y f t t t Y f t

t t t t Y f t t Y f t

µ π µ π µ

π µ π µ µ

, = − + − − =

+ − − = − .%

 

Here 1 0( ) ( ) ( ) ( )(1 ( ))t t t t tµ µ π µ π= + −% . It is clear that the rate of narrowing of the U-

function of risk (which is associated with the slope of ( )tµ% ) may be lower than that in 

each of the two risk functions.  

3.5. Application of QHM with heterogeneity to the FHS data on BMI for females 

To illustrate how our approach works in applications to real data, we analyzed 

data on BMI for females in the FHS data using QHM with heterogeneity. The FHS 

cohort consists of 5,209 respondents aged 28-62 years residing in Framingham, 

Massachusetts, between 1948 and 1952 [2]. The FHS cohort is primarily white and 

has been followed for 50 years for the occurrence of CVD and death through 

surveillance of hospital admissions, death registries, and other available medical 

sources. Examination of participants, including an interview, a physical examination, 

and laboratory tests, has taken place biennially. In our analyses, we used data on BMI 

(which are available in all 25 exams) for 2,872 females in the FHS.  

Fig. 5 illustrates the differences between mortality characteristics in two 

subpopulations (“ 1Z = ” and “ 0Z = ”). The first subpopulation ( 1Z = ) has a higher 

baseline mortality at younger ages and a lower baseline mortality at older ages than 

the second subpopulation ( 0Z = ) and two trajectories intersect at age about 55 years. 

The quadratic hazard term for the first subpopulation is higher and increases faster 

than that of the second subpopulation. Individuals in two subpopulations have 

different patterns of “optimal” trajectories of BMI ( ( )f Z t, ), i.e., age-specific values 

of BMI with minimal mortality at respective ages. Individuals from the first 

subpopulation have an increasing pattern of “optimal” BMI starting from about 23 
2kg m/  at age 28, whereas individuals from the second subpopulation have a 

decreasing pattern of “optimal” BMI starting from about 30 2kg m/  at age 28. Two 
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subpopulations also have different patterns of age-related changes in the adaptive 

regulation ( ( )a Z t− , ). In the first subpopulation, ( )a Z t− ,  declines with age and in the 

second subpopulation it is almost constant. For comparison, Fig. 5 also shows 

respective population trajectories estimated by QHM without heterogeneity (“no Z ”). 

It shows, in particular, that the population “optimal” age-trajectory of BMI deviates 

from the “optimal” trajectories in the subpopulations.  

Fig. 6 displays mortality rates ( ( )tZ t Yµ , , ) and relative risks of death 

( ( )tRR Z t Y, , ) over age ( t ) and values of BMI at age t  ( tY ) for two subpopulations. It 

shows that the mortality rate for the first subpopulation has a more pronounced 

quadratic pattern (due to higher trajectories of ( )Q Z t, ) and the respective U-shape of 

mortality risk is narrowing with age (due to the respective increase in ( )Q Z t,  with 

age). In the second subpopulation, the mortality rate does not exhibit a visible 

quadratic pattern. Thus, individuals from this subpopulation are less sensitive to 

changes in BMI with respect to mortality risks. The narrowing U-shape of risk 

indicates the aging-related decline in resistance to stress. This finding is in line with 

the results obtained in animal aging studies, which show a strong connection between 

the stress resistance and longevity, as well as the decline with age in resistance to 

many stresses [9]. Both subpopulations revealed similar behavior of the relative risk 

with increasing age. Contrary to the mortality risk, it decreases with age and manifests 

a widening U-shape. Such behavior may indicate the increasing role of senescence in 

the total mortality compared to selected risk factors in aging individuals.  

Figs. 5-6 about here 

4. Conclusions 

The model proposed in this paper puts together different concepts capable of 

capturing fundamental features of aging-related changes including the notion of 

allostasis, a decline in adaptive capacity and in resistance to stresses, the aging-related 

physiological norms, and hidden heterogeneity in longitudinal data, and connects all 

these concepts to mortality (or incidence) rates. Such a model provides a possibility to 

develop comprehensive systemic methodology for analyses of available data on 

aging-related phenomena. Simulation studies showed that the estimation procedure 

provides an adequate quality of estimates for a moderate sample size comparable to 

that of the sex-specific FHS data.  

Incorporation of a concept of hidden heterogeneity (discrete frailty) allows one 

to reveal differences in aging-related physiological parameters in individuals 

represented by distinct heterogeneity groups summarizing unobserved aging- and 

mortality-related factors (genetic and non-genetic). Individuals may differ in 

characteristics of allostatic load, forces of adaptive regulation, “optimal” trajectories 

of physiological state, magnitudes of external disturbances, etc. All such differences 

may be identified in the proposed model. A statistical analysis of such differences 

may be performed using the likelihood ratio test comparing the model with equal and 

non-equal trajectories in two subpopulations.  

Ignoring hidden heterogeneity in aging-related characteristics may affect 

conclusions about regularities of respective processes. Differential selection can 

produce patterns of mortality or aging-related characteristics for the population as a 

whole that are qualitatively different from the patterns for respective subpopulations 

[12]. For example, if the difference between the “optimal” age-trajectories of a 

physiological index ( ( )f Z t, ) in two subpopulations is ignored and the resulting 
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observed age-trajectory in the entire population is taken as a universal “optimal” 

trajectory, then this “universal trajectory” will be not optimal for individuals from 

either of the two subpopulations. Therefore, if policy recommendations and health 

interventions are based on this “universal” trajectory aiming to keep an individual’s 

age-trajectory close to this “population” trajectory, then this will actually increase the 

individual’s chances of death due to increasing deviations from the true “optimal” 

trajectory in a respective subpopulation.  

Note that although the conditional distribution of random continuously 

changing covariates among survivors is not Gaussian, the entire situation can be 

exactly described in terms of first two conditional moments of two Gaussian 

distributions and the conditional proportion of individuals in respective groups. The 

result can be easily extended to include more heterogeneity groups comprising the 

entire population. Another possible extension of the model is to include a concept of 

changing frailty. That is, instead of a frailty variable Z  (which is fixed for the entire 

life span of an individual) one can use a hidden jumping process tZ  representing 

changes in a (discrete) hidden heterogeneity state over time. Such a model can be 

useful in analyses of longitudinal data where health histories are unobserved or only 

partly observed. The estimation methods for such types of quadratic hazard models 

driven by a non-Markovian stochastic process need to be developed and validated in 

simulation studies for subsequent use in analyses of longitudinal data.  
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Figure legends: 

Fig. 1: Estimated trajectories of logarithms of baseline hazard ( 0ln ( )Z tµ , ), quadratic 

hazard terms ( ( )Q Z t, ), optimal values of a physiological index ( ( )f Z t, ) and age-

related changes in homeostatic capacity ( ( )a Z t− , ) in two hypothetical subpopulations 

(“ 1Z = , est.” and “ 0Z = , est.”) for 100 simulated data sets with hidden heterogeneity 

evaluated by QHM with heterogeneity. Respective true trajectories in two 

subpopulations are denoted as “ 1Z = , true” and “ 0Z = , true”.  

 

Fig. 2: Estimated population trajectories of logarithm of baseline hazard ( 0ln ( )tµ ), 

quadratic hazard term ( ( )Q t ), optimal values of a physiological index ( ( )f t ) and age-

related changes in homeostatic capacity ( ( )a t− ) for QHM without heterogeneity (“no 

Z , est.”) evaluating 100 data sets simulated by QHM with heterogeneity. Respective 

true trajectories in two hypothetical subpopulations for QHM with heterogeneity are 

denoted as “ 1Z = , true” and “ 0Z = , true”.  

 

Fig. 3: Estimated trajectories of logarithms of baseline hazard ( 0ln ( )Z tµ , ), quadratic 

hazard terms ( ( )Q Z t, ), optimal values of a physiological index ( ( )f Z t, ) and age-

related changes in homeostatic capacity ( ( )a Z t− , ) in two hypothetical subpopulations 

for QHM with heterogeneity (“ 1Z = , QHM” and “ 0Z = , QHM”) evaluating 100 

data sets simulated by Cox model. Respective true trajectories for Cox model are 

denoted as “ 1Z = , Cox” and “ 0Z = , Cox”.  

 

Fig. 4: Estimated population trajectories of logarithm of baseline hazard ( 0ln ( )tµ ), 

quadratic hazard term ( ( )Q t ), optimal values of a physiological index ( ( )f t ) and age-

related changes in homeostatic capacity ( ( )a t− ) for QHM without heterogeneity (“no 

Z , QHM”) evaluating 100 data sets with hidden heterogeneity simulated by Cox 

model. Respective true trajectories for Cox model are denoted as “ 1Z = , Cox” and 

“ 0Z = , Cox”.  

 

Fig. 5: Estimated trajectories of logarithms of baseline hazard ( 0ln ( )Z tµ , ), quadratic 

hazard terms ( ( )Q Z t, ), optimal values of a physiological index ( ( )f Z t, ) and age-

related changes in homeostatic capacity ( ( )a Z t− , ) in two subpopulations (“ 1Z = ” 

and “ 0Z = ”) for QHM with heterogeneity applied to the FHS data on BMI for 

females. Population estimates of respective characteristics for QHM model without 

heterogeneity (“no Z ”) are shown for comparison.  

 

Fig. 6: Estimated mortality rates ( ( )tZ t Yµ , , ) and relative risks of death ( ( )tRR Z t Y, , , 

logarithmic scale) over age ( t ) and values of a physiological index at age t  ( tY ) in 

two subpopulations (“ 1Z = ” and “ 0Z = ”) for QHM with heterogeneity applied to 

the FHS data on BMI for females. Thick black lines denote optimal age-trajectories of 

BMI ( ( )f Z t, ) in respective subpopulations.  
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Tables: 

Table 1. Means, standard deviations (STD), minimal (MIN) and maximal (MAX) 

values of parameter estimates in 100 simulated data sets for QHM with heterogeneity. 

Values for QHM without heterogeneity (“No Z ”) are given for comparison. 

 

1Z = :
0

410aµ ⋅
0

bµ
410Qa ⋅ 410Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa fb p

Mean 2.41 0.090 0.29 0.077 0.049 5.81 3.00 0.90 22.99 0.080 0.70  

STD 0.48 0.004 0.36 0.014 0.002 0.52 0.05 0.004 0.11 0.005 0.003  

MIN 1.49 0.083 0.00 0.025 0.043 4.12 2.87 0.89 22.75 0.068 0.69  

MAX 3.75 0.098 1.77 0.102 0.054 6.81 3.13 0.91 23.24 0.092 0.71  

True: 2.4 0.09 0.2 0.08 0.05 6.0 3.0 0.9 23.0 0.08 0.7

0Z = :
0

410aµ ⋅
0

bµ
410Qa ⋅ 410Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa fb

Mean 0.96 0.121 0.14 0.009 0.051 0.75 5.39 1.60 29.98 -0.029  

STD 0.29 0.006 0.16 0.007 0.003 0.87 0.14 0.01 0.31 0.010  

MIN 0.48 0.110 0.00 -0.006 0.046 0.00 5.09 1.57 29.16 -0.057  

MAX 1.76 0.134 0.58 0.024 0.064 3.57 5.86 1.63 30.82 -0.006  

True: 1.0 0.12 0.1 0.01 0.05 0.5 5.4 1.6 30.0 -0.03

No Z : 
0

410aµ ⋅
0

bµ
410Qa ⋅ 410Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa fb

Mean 2.79 0.092 0.001 0.032 0.035 1.07 4.56 1.15 25.24 0.040   

STD 0.41 0.003 0.007 0.004 0.002 0.58 0.07 0.005 0.13 0.005   

MIN 1.87 0.086 0.00 0.017 0.031 0.00 4.38 1.14 24.95 0.030   

MAX 4.05 0.099 0.07 0.043 0.041 2.73 4.80 1.16 25.53 0.049   
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Table 2. Means, standard deviations (STD), minimal (MIN) and maximal (MAX) 

values of parameter estimates for QHM with heterogeneity evaluating 100 data sets 

simulated by Cox model. Values for QHM without heterogeneity (“No Z ”) 

estimating these data are given for comparison. 

 

1Z = :
0

410aµ ⋅
0

bµ Qa 210Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa  fb p   

Mean 1.16 0.111 0.00 0.001 0.050 5.90 3.00 0.90 23.10 0.064 0.70  

STD 0.20 0.003 0.00 0.0001 0.003 0.61 0.05 0.004 0.10 0.004 0.004  

MIN 0.78 0.102 0.00 0.0008 0.041 3.41 2.86 0.89 22.88 0.055 0.69  

MAX 1.87 0.118 0.00 0.001 0.056 7.06 3.16 0.91 23.31 0.074 0.71  

True: 2.4 0.09 0.03 0.3 0.05 6.0 3.0 0.9 23.0 0.08 0.7  
  

0Z = :
0

410aµ ⋅
0

bµ Qa 210Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa  fb  

Mean 0.49 0.150 0.00 0.001 0.052 1.27 5.39 1.60 30.02 -0.024   

STD 0.14 0.006 0.00 0.0001 0.004 1.31 0.14 0.01 0.29 0.010   

MIN 0.22 0.135 0.00 0.001 0.044 0.00 5.03 1.58 29.15 -0.048   

MAX 0.93 0.166 0.00 0.001 0.064 4.40 5.67 1.63 30.69 0.006   

True: 1.0 0.12 0.04 0.4 0.05 0.5 5.4 1.6 30.0 -0.03  

  

No Z : 
0

410aµ ⋅
0

bµ Qa 210Qb ⋅ Ya 410Yb ⋅ 0σ 1σ fa  fb  

Mean 1.80 0.107 0.00 0.001 0.036 2.20 4.62 1.13 25.39 0.025   

STD 0.22 0.002 0.00 0.0001 0.003 0.74 0.06 0.01 0.12 0.004   

MIN 1.33 0.102 0.00 0.001 0.030 0.12 4.46 1.12 25.04 0.015   

MAX 2.38 0.113 0.00 0.001 0.044 4.40 4.79 1.15 25.69 0.037   
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