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Abstract

As a result of the steady increments in life expectancy and the relatively slow

increase of the maximum lifespan, mortality compression is generally hard to avoid.

However, empirical findings are mixed, both for and against compression. In this

study we develop a method that allows us to closely investigate the dynamic process

of mortality compression. It turns out that there exists a “threshold age”, say A∗, such

that reductions in mortality before it lead to mortality compression, whereas those after

age it to mortality expansion. The overall effect of mortality reduction on compression

can thus be decomposed into two components, the compression of deaths at younger

ages and the expansion of deaths at older ages. Whether the compression of mortality

occurs in the whole population depends on which component is greater.
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Introduction

Record life expectancy has steadily risen in the past 160 years, and shows no sign of slow-
ing down (Oeppen and Vaupel, 2002). Meanwhile, the maximum lifespan of humans has
increased too, though at a relatively slower rate (Wilmoth et al., 2000). As more and more
people live longer but the upper limit of lifespan increases slowly, the distribution of deaths
will be compressed at old age, which is called “mortality compression”(Fries, 1980). How-
ever, empirical findings are mixed, both for and against compression (Myers and Manton,
1984; Nusselder and Mackenbach, 1996; Wilmoth and Horiuchi, 1999; Lynch and Brown,
2001).

Mortality compression is subject to the age pattern of survival improvement. Typically,
because of reductions in deaths at younger ages, some deaths that would have happened
at those ages will be postponed to older ages, leading to mortality compression. Whereas,
mortality improvement at older ages can make old people to live longer and thus leads
to the expansion of deaths among the elderly, which will partly offset the compression of
mortality resulting from reductions in mortality at younger ages. Clearly, the compression
of mortality in the whole population is the result of comparison between the compression
of deaths at younger ages (henceforth, CDYA) and the expansion of deaths at older ages
(EDOA). Whether mortality compression occurs in the whole population depends on which
impact is greater: If the CDYA is greater than the EDOA, then mortality compression will
occur, and vice versa; if both of them are roughly equal, neither compression nor expansion
will appear.

The coexisting of CDYA and EDOA implies that different combinations of them may
lead to the same phenomenon, either compression or expansion of mortality in the whole
population. For instance, the expansion of mortality may result from worsening survivor-
ship at younger ages, which, though much less prevalent nowadays, can be found in some
countries where many young adults are suffering from HIV/AIDS. Alternatively, mortality
expansion may occur when reductions in mortality are greater at older ages than at younger
ages (i.e., EDOA is greater than CDYA). Despite the same expansion, the implications on
health and mortality are rather different or even inverse. In the former case the worsening
survivorship among younger people is bad news in any sense, whereas in the latter case
more and more people living longer corresponds to achievement in pursuing longevity.

To distinguish different combinations of CDYA and EDOA, it is required to precisely
identify them. In doing so, we need explicitly define the threshold age, instead of using
it in a vague way through the usage of “younger” or “older” ages. The threshold age is
such that reductions in mortality before it lead to CDYA, while those after it to EDOA. Note
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that the definition of threshold age also provides the clue to estimate it. In this study, we
develop a method that allows us to estimate the threshold age and closely investigate the
dynamic process of mortality compression.

The threshold age

The compression of mortality, characterized by decreasing variation of ages at death, is
usually related to the equalizing of life chances. Hence, measures of lifespan disparity or
variation of ages at death are also used for measuring mortality compression. In the present
study we prefer lost life expectancy (LLE), despite other alternatives such as standard devi-
ation (SD) and Inter-Quartile Range (IQR) of the distribution of ages at death, Keyfitz’ H ,
the Gini coefficient, and so on (Keyfitz, 1977; Wilmoth and Horiuchi, 1999; Shkolnikov
et al., 2003; Cheung et al., 2005; Edwards and Tuljapurkar, 2005). First, LLE is highly cor-
related with all other measures.1 Second, LLE has the characteristics of a life table function
so that lifespan disparity can readily be investigated together with other life table functions.

LLE may date back to the concept of life deprivation due to death, which was proposed
first by Keyfitz (1977). Following the line of of life table entropy (Keyfitz, 1977; Demetrius,
1978), Mitra (1978), Goldman and Lord (1986), and Vaupel (1986) independently obtained
the mathematical expression for LLE. Recently, Vaupel and Canudas-Romo (2003) further
derived the relationship between LLE and the rate of change in life expectancy.

In conventional notation, LLE is given as below

e†(t) =
∫ ω

0
e(a, t) f (a, t)da (1)

where e(a, t) =
∫ ω

a `(x, t)dx/`(a, t) is the remaining life expectancy at age a, f (a, t) =
`(a, t)µ(a, t) the life table distribution of deaths, `(a, t) the survival function at age a and
time t, µ(a, t) mortality force at age a, and ω the maximum age to reach. e† thus measures
the homogeneity of a population’s life chances. If e† is small, then people die at roughly the
same age, indicating mortality compression; if e† is large, then people die at very different
ages, indicating mortality expansion.

The age-specific impact of survival improvement on lifespan disparity can be specified
by the derivative of e† with respect to mortality change over time as below

g(a, t) =
de†(t)

−dln µ(a, t)
= f (a, t)

[
e†(a, t)− e(a, t)(1+ ln`(a, t))

]
, (2)

1The results of correlation coefficients are not shown here, but available for request.
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where e†(a, t) =
∫ ω

a e(x, t) f (x, t)dx/`(a, t) is lost remaining life expectancy of the survival
up to age a at time t. Hence, the function g(a, t) measures how much change in e† is due to
an equal reduction in mortality at age a and time t. As shown by Figure 1(A), g(0, t) < 0
suggests that the decline in infant mortality may bring e† up; and the bigger |g(0, t)|, the
more contribution to the decline in e† that is made by the equal reduction in infant mortality.
On the contrary, g(ω , t) > 0 means that e† may go up because of reductions in old age
mortality.

Equation (2) is helpful for obtaining threshold age, though without a very straightfor-
ward demographic interpretation. Let

k(a, t) = e†(a, t)− e(a, t)(1+ ln`(a, t)), (3)

with
g(a, t) = f (a, t)k(a, t). (4)

As shown in Figure 1(B), k(a, t) is a continuous function of a, and monotonic mostly on
[0,ω]. It proves that there exists only one A∗ ∈ [0,ω] at time t such that k(A∗(t), t) = 0,
k(a, t) < 0 when a < A∗(t), and k(a, t) > 0 when a > A∗(t). (See Appendix for details about
proof of the uniqueness of A∗(t).)

Because f (a, t) > 0 for all a ∈ [0,ω], it follows from (4) that

g(a, t) < 0 if a < A∗(t),

g(a, t) = 0 if a = A∗(t), and

g(a, t) > 0 if a > A∗(t).

A∗(t) thus works as a “threshold age” such that mortality improvement at ages younger
than A∗(t) can contribute to compression of mortality while that at ages older than A∗(t) to
expansion.

As mentioned above, the function g(a, t) measures how much e† will be changed by an
equal reduction in mortality, and thus indicates the efficiency of mortality improvement on
lifespan disparity. The magnitude of change in e† due to mortality decline is obtained after
taking into account the progress against mortality, that is,

G(a, t) = g(a, t)ρ(a, t), (5)

where ρ(a, t) = −dln µ(a, t)/dt is the rate of progress of mortality improvement (Figure
1(C)). Hence, G(a, t) measures the change in e† resulting from the reduction in mortality at
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Figure 1: The functions g(a, t) (A), k(a, t) (B), ρ(a, t) (C), and G(a, t) (D) for Japanese
females in 1950s, 1970s, and 1990s. Source: Human Mortality Database 2007
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age a and time t, and its sum over age a amounts to the change in e†

ė†(t) = de†(t)/dt =
∫ ω

0
g(a, t)ρ(a, t)da =

∫ ω

0
G(a, t)da, (6)

Based on the threshold age A∗, ė† can be decomposed into two components

ė†(t) = Gc(t)+Ge(t), (7)

where,

Gc(t) =
∫ A∗(t)

0
G(a, t)da and Ge(t) =

∫ ω

A∗(t)
G(a, t)da (8)

are CDYA and EDOA at time t, respectively.2

As discussed above, whether ė† is below zero depends on which of Gc and Ge is greater.
If Gc < 0 and |Gc| > Ge, then ė† < 0. This means the decrease in e† , indicating the oc-
currence of mortality compression. Instead, if Gc ≥ 0 or Gc < Ge, then ė† > 0, indicating
mortality expansion. In addition, if Gc < 0 and |Gc| = Ge, neither compression nor expan-
sion will take place.

As mentioned above, the same change in e† may result from different combinations of
Gc and Ge. Consider the case of ė† > 0, meaning mortality expansion. A first combination
is |Gc| < Ge when Gc < 0. That is, the progress against mortality is more favorable to the
older people. A second possibility is that both Gc and Ge are positive. In this case, the
survival worsening happens to people younger than A∗, while the survival improvement
happens to the elderly aged above A∗. The two combinations of Gc and Ge underlying the
same ė† > 0 can give the inverse evaluation on mortality conditions.

Since A∗ is determined by life table functions like `(a, t), f (a, t) and µ(a, t), the changes
in such functions over time will change A∗ too. As shown in Figure 1(B), as k(a, t) shifts
to the right, the point A∗ at which k(a, t) crosses the horizontal line moves to the right
accordingly. The feature of A∗ increasing over time can be illustrated in analysis relevant
to age-specific contributions to mortality expansion, as in a previous study by Wilmoth
and Horiuchi (1999).3 More important, time-varying threshold age reminds us of the com-
parability of mortality compression in population subgroups. For example, assume that

2Note that Gc(t) > 0 does not mean that death rates at all ages before A∗ increases. Instead, the relatively
realistic situation is that the survivorship deteriorates at some ages, but improves at others. The sum of
Gc(a, t)’s at the ages with survival worsening is greater than that at ages with survival improvement, so
Gc(t) > 0. The same logic can be applied to negative Ge(t) < 0 although Ge(t) is usually positive.

3Although the threshold age was not explicitly marked in that study, it still can be seen between the ages
with negative contribution to change in IQR and those with positive contribution; Moreover, the threshold age
increased over time (Tables 3 and 5 on pp. 484, ibid.). Unfortunately, the age ranges of 5 or even 20 years
used in decomposition analysis are too big to delineate the trajectory of threshold age.
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Figure 2: (A) The threshold age, life expectancy, and old-age mode for Japanese females,
1950-2005; (B) The gaps between life expectancy and threshold age in selected countries.
Source: Human Mortality Database 2007

threshold age in a population has increased from 60 to 70 over the past fifty years. The
rise of e† in the subgroup aged 65+ that occurred fifty years ago can be totally attributed to
EDOA, because all reductions in mortality after age 60 contributed to mortality expansion
at that time. However, when threshold age goes up to 70, the change in e† in the subgroup
aged 65+ is mixed with CDYA at age 65-70 and EDOA at age 70+. In this sense, the sub-
group aged 65+ fifty years ago is different from the current one. Usually, it is problematic
to compare two such different groups in examine change in mortality expansion over time.
For instance, the increase in e† currently observed in the subgroup aged 65+ underestimates
the magnitude of mortality expansion at older ages, because CDYA can offset EDOA in part.

Mean age, modal age, and threshold age

The widening gap between A∗ and eo in Figure 2(B) may seem puzzling. Suppose that
deaths of a population follow a normal distribution that is symmetrical about the mean and
mode. A decrease in the left half of such a distribution resulting from mortality decline
will compress the deaths to the right. As the deaths are increasingly concentrated on the
right half of the distribution, the mean will increase. However, the determinants of change
in the mean are different from those in threshold. Any progress in reducing mortality can
increase the mean length of life, whereas a change in threshold age is largely determined
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by the distribution of such a progress over age. For instance, if mortality reductions largely
benefit to the elderly (or the right half of the death distribution), threshold age may fall
behind the mean age. In an extreme case in which the progress in reducing mortality is
uniformly distributed over age, the differences among A∗, eo and the mode will remain
identical.

The death distribution of humans is bimodal so that these three ages are mostly dif-
ferent. Moreover, since the progress against mortality becomes greater among the elderly
than that among the young people, threhold age becomes gradually lower than mean. Of
these three age, threshold age is the smallest (Figure 2(A)). That means that reductions in
death rates before mean or mode do not necessarily lead to mortality compression, because
mortality decline occurring between the threshold age and mean or mode will contribute to
mortality expansion.

The threshold age has generally been lower than life expectancy over the past fifty
years, with a few exceptions in the early 1950s (Figure 2(B)). And the gaps between life
expectancy and threshold age tend to converge at a roughly constant level of three years.
Since threshold age is lower than mean age, mortality expansion is more likely to occur
than mortality compression. When A∗ < eo, even if people fail to live as long as an average
individual of the population, they can make a contribution to mortality expansion. On the
contrary, if A∗ > eo, only people living longer than both eo and A∗ can contribute to EDOA.
That is, EDOA is relatively easy in the case with a lower A∗ than e† . On the other side,
CDYA becomes increasingly difficult because the mortality at younger ages is already very
low, and compared to that at older ages, is unlikely to further decline. Taken together, the
two sides suggests that EDOA tends to catch up with and even exceeds CDYA in magnitude.
As a result, the compression of mortality in the whole population may fade away, and
further be substituted by the expansion.

Decomposition of mortality compression

Figures 3(A) and (B) graph the historical trends of e† and ė† for females in selected countries
since 1950. First, e† mostly converges across countries. In the 1950s e† in Japan was the
highest while that in Sweden was very low; but e† ’s in the two countries have closed forty
years later. Many other countries between the two countries in terms of e† have converged
by the 1990s. Second, e† is inversely related to ė† , namely, the lower e† , the slower decline
in e† , and vice versa. The country with a high e† like Japan experienced a quick drop in
e† , while some other countries with a low e† like Sweden had a very modest decline in e† .
Third, the inverse and the convergence of e† implies that ė† converges across countries too.
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Figure 3: Lost life expectancy (A) and the rate of its change (B) with two components Gc
(C) and Ge (D) in selected countries, females, 1950-2005. Except for e† , the rest three
graphs are based on the smoothened line. Source: Human Mortality Database 2007
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The trajectory of ė† plotted in Figure 3(B) looks roughly like a mirror image of e† in Figure
3(A), particularly during the period 1950-1990.

Of selected countries or broadly developed countries, the US is one of a few exceptions
from the convergence of e† . In the 1950s the US stayed in the middle of selected countries
in terms of e† , but became an outlier fifty years later because its e† was as high as some
other poor-practice countries like Ukraine. This is largely due to the slow rate of decline
in e† in the US. For example, the US had the similar e† to Finland in 1950, but then fell
behind because Finland had experienced a quick decline in e† . Some other countries also
had slow decline in e† , but had a relatively low e† at the beginning of the period 1950-
2005, such as England & Wales. Then the decline in e† in England & Wales remains nearly
parallel with that in the US until now. Consequently, the US gradually stepped away from
the convergence trend of e† among developed countries.

The divergence in ė† since the early the mid-1990s is remarkable, mainly characterized
by the increasing of ė† in the US and Finland. As we know, when ė† is positive, its increase
simply indicates an accelerating trend of increase in e† , meaning a quick expansion of mor-
tality4. Since the historical experience of humans so far suggests the association between
mortality expansion and survival worsening, which is often indicated by falling of life ex-
pectancy. However, life expectancy has increased in the two countries by now, and survival
worsening is hard to account for mortality expansion.

With (7), the changes in e† for selected countries are decomposed into two such compo-
nents, Gc and Ge. To be comparable, the same scale is used for the vertical axis in Figures
3(B), (C) and (D). The trajectory of Gc almost resembles that of ė† , meaning that the de-
cline in e† is largely attributable to mortality compression resulting from mortality decline
before A∗. Then the quick convergence in ė† is also reflected by the trajectory of Gc. As
shown in Figure 3(C), Gc in most countries had quickly converged by the mid-1980s.

Gc represents the contribution of survival improvements before the threshold age to the
decline in e† : the lower |Gc|, the less contribution. Strikingly, except for the 1970s, the US
has been the country with the least contribution of Gc to its decline in e† almost throughout
the whole period 1950-2005. By contrast, Gc in Finland has contributed the most to its
decline in e† since 1970s when all countries finished the quick fall of Gc. As death rates at
younger ages keep decreasing, Gc usually declines. Hence, the gap in Gc between the US
and Finland measures the room for further decline in e† resulted from Gc.

Relatively, Ge appears much less variable than Gc. Apart from a few small fluctuations
in Sweden and Italy, the noticeable change in Ge is the rise of Ge in the US and Finland very

4When ė† is below zero, its increase (i.e., the decline in its absolute value) amounts to the slowing down
of decline in e† .
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recently. It is important to realized that a high Ge is not sufficient for mortality expansion
in the whole. For instance, Finland’s Ge has been the highest among selected countries,
but mortality expansion appeared only in the late 1990s when Ge outweighed Gc. On the
contrary, a small Ge may lead to expansion if it is relatively higher than Gc, as in the US.
The US’ Ge is smaller compared to Finland’s, but higher than Gc; so even a modest increase
in Ge increased e† , leading to mortality expansion.

The decomposition analysis above makes it evident that mortality expansion occurring
in the US and Finland very recently is due to EDOA that outweighs CDYA, rather than a
deterioration in survivorship. In particular, Gc in the two countries remains negative until
today, meaning the continuing progress of reducing mortality at younger ages regardless of
the speed of such a progress. That is, the expansion of mortality in the two countries results
from the survival improvement, especially among the elderly people.

Discussion and Conclusion

The steady increment in life expectancy over the past 160 years is closely associated with
mortality compression. This is mainly attributable to the change in the age pattern of sur-
vival improvement, as summarized in the theory of epidemiological transition (Omran,
1971; Olshansky and Ault, 1986; Horiuchi, 1997). By the mid-20th century, reductions in
mortality had been considerable among children and adults at reproductive ages, but modest
among the elderly (Horiuchi, 1997). Accordingly, mortality compression occurred because
compression of mortality at younger ages was greater than the expansion of deaths among
the elderly. For example, in Sweden, the compression of mortality was largely attributed to
decreasing mortality among the very young (Wilmoth and Horiuchi, 1999).

Since the 1950s, however, many wealthy countries have gradually stepped into a new
stage, which is characterized by reduction of mortality due to degenerative diseases. Mor-
tality at advanced ages has declined considerably since the 1950s (Kannisto, 1994; Kan-
nisto, 1996; Rau et al., 2005). The expansion of deaths among the elderly tends to be
greater than before. On the other hand, the death rates at younger ages are already very
low so that further compression of deaths among the younger people become increasingly
difficult. Consequently, the compression of mortality in the whole population might grad-
ually disappear. For instance, compression in the U.S. had been occurring by the 1960s,
but disappeared since (Wilmoth and Horiuchi, 1999). And further, the latest data show that
compression in the U.S. emerged again in the last decade. Besides the US, Finland also ex-
perienced mortality expansion in very recent years. Put another way, the lifespan disparity
in the two countries has increased. Following the logic derived from the historical trends
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of lifespan disparity of humans, the two countries would be regarded as having greater in-
equality of life chances. Is this correct? Maybe not. Considering that both Finland and
the US enjoy relatively high life expectancy, which continues to increase, we should be
cautious about interpreting the increase in lifespan disparity or mortality expansion.

Since the compression of mortality in the whole population is determined by the result
of comparison between CDYA and EDOA, we develop a method to distinguish the two
effects of mortality decline at different ages. It turns out that there exists a threshold age
such that reductions in mortality before it will lead to mortality compression, whereas those
after it to mortality expansion. Furthermore, based on the threshold, the change in mortality
compression or lifespan disparity can be decomposed into two components. With the aid
of such a decomposition, we find out that increases in lifespan disparity in the US and
Finland are attributable to survival chances that have improved more for older people than
for younger people.

The present study is mainly concerned with the change in lifespan disparity so far.
However, considering the continuous improvement of survivorship of the elderly, it is inter-
esting to further ask what will be happening in the future. For instance, will more and more
countries join the list of countries with mortality expansion? – Because of the spreading
of reductions in mortality of the elderly over the world. Will another compression follow
after the mortality expansion? – Because of the spreading of knowledge about survival im-
provement from the oldest old to younger old. Indeed, these questions are as challenging
as forecasting human lifespan.

Appendix

It is evident from (3) that the function k(a, t) is continuous on [0,ω ], as other functions
in the right side of (3). Moreover, k(a, t) < 0 when a = 0 because ln`(0, t) = 0 and then
k(0, t) = e†(0, t)−e(0, t) while e†(0, t) < e(0, t). Moreover, k(a, t) > 0 when a = ω because
both e†(a, t) and e(a, t) approach to 0+ when a → ω , but lim

a→ω
ln`(a, t) = −∞. According

to the intermediate value theorem, there exists at least one A∗(t) ∈ [0,ω] at time t such that
k(A∗(t), t) = 0.

If e(a, t) is monotonic on [0,ω ], so is k(a, t). Further, if k(a, t) is strictly monotonic on
[0,ω], there will be only one A∗(t). However, e(a, t) in the population with very high infant
mortality is not monotonic because it increase more or less at the very beginning, and goes
down after reaching the peak at certain age (e.g., age three for Swedish females in 1900).
Correspondingly, k(a, t) falls slightly first and then turns up. Let a(t) be the age at which
k(a, t) reaches the minimum at time t, and e(a, t) the maximum, then k(0, t) > k(a(t), t)
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and e(0, t) < e(a(t), t). It is evident that e(a, t) is strictly increasing on [a(t),ω], and so
is k(a, t). In practice, k(0, t) is very close to k(a(t), t) that is usually far lower than zero.
This suggests little possibility that there is another value c ∈ [0,a(t)] such that k(c, t) = 0.
As infant mortality has dramatically dropped in the past decades, both e(a, t) and k(a, t) in
many cases are monotonic. So A∗ is generally unique with k(A∗(t), t) = 0, k(a, t) < 0 when
a < A∗(t), and k(a, t) > 0 when a > A∗(t).
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