
 

 

 

 

 

 

 

 

 

Shape of the BMI-Mortality Association by Cause of Death, Using Generalized Additive 

Models: NHIS 1986-2002. 

 

Anna Zajacova 

University of Michigan 

 

April 7, 2008 

 

 

 

 

 

 

 

Contact: Anna Zajacova, Population Studies Center, ISR, University of Michigan, 426 

Thompson St. #2048, Ann Arbor MI 48104; email: zajacova@umich.edu. 

 

Draft prepared for Population Association of America Annual Meeting, New Orleans LA, April 

17-20 2008. 

Comments welcome. 

 

 



Shape of BMI-mortality relationship 

 

1 

 

Abstract. 

 

The relationship between body mass index (BMI) and mortality is curvilinear; with very high 

and low BMIs are associated with increased odds of dying.  The precise shape of the association 

for the majority of adults in the center of the BMI distribution, however, has not been 

established.  This paper employs generalized additive models (GAMs) to describe the 

relationship between BMI and cause-specific mortality.  GAMs allow modeling the shape of the 

relationship without imposing a priori constraints on the functional form of the predictors, which 

helps avoid model misspecification and results in an accurate but still parsimonious description 

of the predictors’ effects.  We examine the association between BMI and all-cause and cause-

specific mortality (cardiovascular, respiratory, cancer, and diabetes).  Analyses are based on the 

National Health Interview Survey 1986-2000 linked to the National Death Index for NH white 

adults age 50-80. Results suggest that the BMI-mortality association is more V-shaped than U-

shaped for both men and women.   The association differs substantially for different cause of 

death:  from essentially flat for cancer, V-shaped for cardiovascular, inverted J-shape for 

respiratory, to monotonically increasing for diabetes. 
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The sharp increase in the prevalence of obesity among adults in the U.S. in recent decades 

constitutes one of the most prominent public health issues.  About a  third of American adults is 

overweight and another third obese (Hedley, Ogden et al. 2004).  Health consequences of excess 

weight encompass a wide range of negative outcomes, from chronic conditions such as diabetes 

and osteoarthritis, to physical limitations, poor health-related quality of life, to higher mortality 

rates (Troiano, Frongillo et al. 1996; Durazo-Arvizu, McGee et al. 1997; Bender, Trautner et al. 

1998; Ferraro and Booth 1999; Himes 2000; Ferraro, Su et al. 2002; Mokdad, Ford et al. 2003). 

These population trends motivated the development of a large body of literature examining the 

association between BMI and mortality.  There is a general consensus that both very low and 

very high BMIs are associated with increased mortality (Lee, Manson et al. 1993; Bender, Jockel 

et al. 1999; Greenberg 2001; Allison, Zhu et al. 2002; Zhu, Heo et al. 2003; Flegal, Graubard et 

al. 2005; Flegal, Graubard et al. 2007).   The knowledge about the higher odds of dying for the 

very thin and very heavy has been documented as far back as the 19
th
 century (Czerniawski 

2007).   In contrast, there is little agreement about the shape of the relationship for the bulk of the 

BMI distribution in the population (for instance, see Mokdad, Marks et al. 2004; Flegal, 

Graubard et al. 2005; Greenberg 2006; Greenberg, Fontaine et al. 2007).    Across different 

studies and population segments, the nadir of the mortality curve varies from BMI below 22 to 

above 30.   In studies using categorical BMI, there is similar lack of consensus about the 

mortality risks of overweight adults in comparison to their normal-weight counterparts (McGee 

2005).   

Moreover, there is a number of factors that have a strong impact on the association between body 

mass and mortality.  Controlling for smoking, exclusion of early deaths, baseline health status, 

and other adjustments sometimes has a profound effect on the shape of the association (i.e., 

Manson, Willett et al. 1995; Allison, Gallagher et al. 1997; Adams, Schatzkin et al. 2006; 

Gelber, Kurth et al. 2007).   In addition, the BMI-mortality relationship is context-specific: age, 

gender, and race groups all evidence somewhat different effects of body weight on mortality 

(Sobal and Stunkard 1989; Inelmen, Sergi et al. 2003; Yan, Daviglus et al. 2004; Flegal, 

Graubard et al. 2005).  Thus, despite the wealth of research on BMI and mortality, we still don’t 

have a sufficient understanding of the association between BMI and mortality for the majority of 

the adult population in the center of the weight distribution. 
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In this paper, we address two drawbacks ubiquitous in published studies: examination of all-

cause rather than cause-specific mortality, and forcing an a priori functional form of BMI on 

mortality risk.  The focus on all-cause mortality is driven in part by data constraints:  studying 

cause-specific mortality in adults requires a fairly large dataset, which naturally has to include 

both body weight information and mortality followup.  It is understood, however, that BMI has a 

different association with deaths from diabetes or cardiovascular disease compared to cancers or 

even external causes like accidents and homicides.  Second, all published studies we are aware of 

constrain the shape of BMI to be either a step function (when BMI is included in models as a 

categorized predictor with ‘normal’ weight as reference), linear (usually for a restricted range of 

the weight distribution), or quadratic (to allow the increased mortality at both ends of the BMI 

distribution).  This type of constraints can potentially bias findings and obscure the true shape of 

the relationship because they impose an apriori global solution to the functional form of the 

predictor, BMI, rather than allowing the data to reveal the best fitting form. 

This is an exploratory analysis that examines the shape of the relationship between body mass 

index and all-cause as well as cause-specific mortality, using a large nationally representative 

data (NHIS) from 1986-2000 linked to the National Death Index.  Our paper contributes to the 

literature in two main aspects.  First, we study mortality by specific causes of death.  Such 

disaggregation is crucial in order to provide a clearer picture of the effects of body weight on 

mortality processes that presumably differs for causes as varied as, say, cardiovascular, smoking-

related respiratory,  and diabetes.   Second, we employ generalized additive models, a type of 

nonparametric approach,  to examine the shape of the association.  Many researchers who 

examine the effect of BMI on health outcomes note the need to more closely examine the shape 

of the association.   We fill this serious gap by providing a picture of the shape that is driven 

entirely by the data structure, rather than by a priori modeling assumptions for the functional 

form of the BMI effect.   

DATA AND METHODS 

Data  

The analyses are based on the National Health Interview Survey (NHIS) data for years 1986-

2000, linked to multiple cause-of-death files from the National Death Index that includes deaths 

through 2002.   The NHIS is a large annual cross-sectional health survey conducted through 
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face-to-face household interviews by the National Center for Health Statistics (NCHS).   NHIS 

uses a complex multistage stratified sampling design to obtain a sample representative of the 

civilian non-institutionalized U.S. population.   Every year, around 100,000 households are 

selected for interviews.  The total household response rate was around 90%; the rates were over 

95%  in the earlier years (Massey, Moore et al. 1989) and declined to 89% in 2000 (CDC 2002). 

Additional information about the sampling design are available in Massey et al. (1989) for years 

1985-1994 and in Botman et al. (2000) for 1995-2004.  The data and accompanying 

documentation for all survey years are available on the NCHS website: 

http://www.cdc.gov/nchs/about/major/nhis/quest_data_related_doc.htm.   

Vital status for adults who participated in 1986-2000 NHIS was determined by a probabilistic 

match to the National Death Index (Lochner, Hummer et al. 2007).  The NDI includes 

information on the date of death and detailed cause of death.  The NHIS-MCD linked data file 

includes only the underlying cause of death and select contributing causes, coded using the ICD-

10 classification. 

Sample 

The analyses are based on non-Hispanic white men and women who were 50-80 years at the time 

of the interview and whose BMI was between 15 and 45 points.   The upper age boundary was 

set because of indications that the matching of death information was less successful than at 

younger ages (Masters, Brown and Hayward, unpublished analyses), which could lead to biased 

findings.  The lower age boundary and the BMI range were chosen to obtain a relatively small 

sample (N=109,345 for men and N=128,563 for women), without outliers in ages at death.  The 

BMI range was chosen to exclude individuals (3.1%) with extreme values of the body mass 

index.   

Measures 

Body mass index (BMI) was calculated from self-reported height and weight using formula 

BMI=703*(weight in pounds/squared height in inches).  From the NHIS respondent pool, about 

12 percent did not report their height or weight, were not asked the height and weight questions, 

or their information was topcoded or bottomcoded and thus their BMI was not calculated.  The 

top- and bottom-coded individuals were generally at the ends of the BMI distribution (though not 

necessarily—for instance, a very tall and heavy person may have been topcoded although they 

had a normal BMI).  With a flexible modeling of the BMI as a predictor of mortality, this would 
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not bias the results – however, data sparseness at the boundaries of the distribution may present 

an estimation problem.  In the first part of the analysis, BMI was used as a continuous predictor 

with a quadratic functional form centered around 25. 

The mortality data file included the underlying cause of death and select contributing causes 

coded using the ICD-10 classification.  We categorized causes into one of the following major 

categories: cardiovascular, cerebrovascular disease, respiratory including lung cancer, cancer 

excluding lung, diabetes, external, and other causes.  Lung cancer was included among lower-

respiratory diseases such as COPD or emphysema because all these causes are strongly affected 

by smoking behaviors.    In the analyses, we presented results for all-cause mortality, as well as 

for four select causes:  cardiovascular, respiratory, cancer, and diabetes.  Duration of followup 

was measured in years and ranged from 3 to 17 for survivors and 0-17 for respondents who died.   

Control variables included age, region of residence (Northeast as reference), and rural residence 

(not rural as reference).  Auxiliary analyses also adjusted for marital status (married as reference) 

and education categorized as less than high school, high school (reference), and more than high 

school.   There were no missing values on demographic variables used in presented models.  The 

proportion of observations with missing values on marital status and education was less than 1 

percent.  These were excluded from the auxiliary analyses.  The inclusion of the control 

variables,  on which the survey sampling was based, eliminated the necessity of using weights in 

order to obtain unbiased estimates for the effects of the predictors (Winship and Radbill 1994).    

However, to assess the possible issues with point estimates and their standard errors, we 

estimated parallel sets of parametric models, with and without adjusting for sampling design.  

We found no substantive differences in the values of the point estimates or their p-values. 

Analysis. 

In the first part of the analyses, we estimated models comparable to those used in existing 

literature: Cox proportional hazard models with a quadratic form for BMI.  The results are 

presented in table 2 and figure 1.  In the rest of analyses, we used Poisson models on a person-

year data structure (Carstensen 2005), because GAMs have not been developed for use with 

proportional hazard models.  In the Poisson analysis, the unit of observation is not time of 

observation like for Cox models but a person-year time interval.  The response is a dichotomous 

0/1 variable indicating dead or survive for each person-time unit.  This approach has multiple 

advantages over proportional hazard models, including an easy incorporation of time-varying 
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predictors.  The disadvantages include computational cost (expanding a person-level dataset to 

person-time dataset multiplies the number of observations in the dataset, in our case by a factor 

of 10).  We first these estimated these  models with the same set of predictors as the Cox models 

to examine the comparability of estimates from proportional hazard models and person-year 

Poisson models. 

 In the main part of the analyses, we employed generalized additive models to flexibly estimate 

the shape of the BMI- mortality association.   This approach is ideal for examining the precise 

shape of a predictor’s effect in a way that parametric methods cannot capture (Xiang 2001).  The 

GAMs allow fitting any predictor with an arbitrary nonparametric smoothing function, which 

avoids the need for a priori assumptions about the shape of the predictor’s effect.   The  models 

assume only that the mean of the outcome variable is a function of additive predictors through a 

nonlinear link function (Stone 1985; Hastie and Tibshirani 1990).   These models offer a great 

compromise between  some nonparametric methods such as projection pursuit, recursive 

partitioning regression, or neural networks, which are very flexible but difficult to interpret, and 

traditional models, which are parsimonious and easy to read but may not capture the effect of a 

predictor if the effect varies across the range of its values (Beck and Jackman 1998).  GAMs are 

more versatile that other nonparametric regression approaches, such as splines or local regression 

methods.  Moreover, GAM can accommodate interaction terms (we used tensor product splines), 

which allows us to examine the shape of the BMI-mortality association by lag time from 

interview to death/censoring.   R version 2.6.1 was used to estimate the models.  Results are 

shown two- and three-dimensional plots (the latter to display how the BMI-mortality curve 

varies by duration).   

The intuition for GAMs is straightforward.   In simple linear regression, the dependent variable 

is a linear function of one predictor: .  Multiple linear regression extends this 

relationship to more than one predictor; the dependent variable is a linear combination of the 

predictors  or  .  There are additional assumptions 

such as that the errors ).  Generalized linear regression is an extension for non-

normally distributed response variable:   where some link 

function  transforms the mean of y to     
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Nonparametric regression relaxes the assumption of linearity.  The strength of nonparametric 

methods is a more accurate modeling of the regression function.  The drawbacks differ according 

to the specific method but generally include computation cost and interpretability of results.  The 

outcome is assumed to be some smooth (but not necessarily linear or monotonic) function of the 

predictors.  Simple nonparametric regression parallels simple linear regression in that the 

dependent variable is a function of one predictor, but their association is not necessarily linear: 

.   This regression is also called scatterplot smoothing because it estimates a 

smooth curve in a scatterplot of y against x.  It provides intuition for how higher-dimension 

nonparametric regression models work and it forms essential estimation blocks for additive 

nonparametric regression.  The most widely used simple nonparametric regression approach is 

lowess (locally weighted scatterplot smoothing) , a local regression with tricube weights and 

bisquare robustness weights (Cleveland 1979).   

Additive nonparametric regression is a multiple regression with the following constraint:  the 

outcome is assumed to be a combination of one or more smooth functions of the predictors: 

.  Its major strengths are in interpretability and estimation 

(avoids the curse of dimensionality that plagues most nonparametric methods, among them 

lowess/loess).  In terms of both estimation and interpretation, the additive model reduces to two-

dimensional partial-regression equations.  The additive model can be semi-parametric, that is, 

some of the predictors can be linear predictors and others nonparametric: 

.  Finally, despite its name, 

additive models can incorporate the ‘interaction’ of two or more predictors.  Generalized additive 

models extend the linear additive regression to non-Gaussian responses including binary and 

count data:  .  We use a Poisson distributed response with 

a log link on a person-year file structure to model the odds of dying by BMI. 

RESULTS. 

Table 1 presents characteristics of the analysis sample that comprises non-Hispanic white men 

and women age 50-80 at interview with BMI between 15 and 45.  The mean age at interview was 

62.8 years for men and 63.9 years for women.  On average, men contributed 9.7 years of 

exposure, women contributed 10.1 years.  During the followup time, 29.4% of the male 
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respondents died at average age of 74 years, as did 22.4% of the female respondents, at 76.1 

years.  During the interview, men’s mean BMI was 26.3 and women’s BMI was 25.4 – in the 

low overweight range for both groups.  More women than men had normal weight.  More men 

than women were overweight (47.7% vs. 30.5%) but slightly more women were obese (16.3% 

vs. 15.6%).  The modal cause of death was cardiovascular disease for both genders. 

Table 2 shows results from parametric proportional hazard models of all-cause mortality for men 

and women, using quadratic and categorical classifications of BMI.  In all models, BMI was a 

significant predictor of mortality hazard.  Controlling for education and marital status had little 

impact on the BMI coefficients (results not shown, available on request).  In the quadratic 

specification, a simple calculation shows that the nadir of the BMI-mortality curve was at 

BMI=28.2 for men and 27.1 for women.  The models with categorical BMI show that obese 

individuals had a significantly higher risk of dying compared to their normal-weight 

counterparts, although the effect was weaker for men.  Obese men had about 9% higher odds of 

dying compared to normal-weight men while obese women had 26% higher odds.  Overweight 

men had substantially lower mortality hazard as compared to normal-weight adults; their odds of 

dying were about 15% lower.  The overweight vs. normal weight difference was significant for 

women as well but substantively smaller, about 3% lower odds of dying for overweight women.  

Being underweight was associated with the highest mortality hazard: compared to their normal-

weight counterparts, the odds of dying were 240% higher for underweight men and about 80% 

higher for underweight women. 

Figure 1 shows the results from model 1 for men and women.  The plot suggests that BMI was a 

somewhat stronger predictor of all-cause mortality for men than for women, with men’s 

mortality increasing more steeply from the nadir of the curve.  The figure also shows that in this 

quadratic specification of BMI, there was a wide range of BMIs, between BMIs of about 25 to 

the low obese range around 32 where mortality was roughly flat for both men and women.   

Next, results from nonparametric GAMs are presented.  Because the GAMs have not been 

developed for proportional hazard modeling network, we switched to Poisson models of death 

indicator on a person-year data.  We first estimated the Poisson models parametrically, with the 

same set of predictors as the models above (table not shown).  We found the effects of BMI to be 

essentially identical:  for instance, the effect of BMI was .958 and BMI squared 1.007 in the 
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Poisson model, compared to Cox results of .957 and 1.007.  The standard errors were identical to 

the fourth decimal place as well.  This comparison ensured that the results described below are 

comparable to results obtained from Cox models. 

 Figures 2a and 2b display the shape of the association between BMI and all-cause mortality, 

adjusted for basic demographics – comparable to those shown in table 2 and figure 1.  The 

association retains the curvilinear shape but it’s narrower than the quadratic form would suggest.  

For men, the shape is closer to a V, with a nadir just slightly above BMI of 25.  For women, the 

nadir of the mortality curve is below 25, in contrast to the BMI=27.1 calculated from the 

parametric models.  There is also a leveling of the mortality curve at high BMIs (above 40).   

Duration of followup time has been shown an important mediating factor in the BMI-mortality 

relationship.  We first incorporated the lag time between interview and a given person-year of 

observation into the models additively, and allowed both the lag variable and age to be modeled 

flexibly.  The results are presented in figures 3a for men and b3 for women.  Adjusting for lag 

time does not have a strong effect on the shape of the BMI predictor.  Age is linear, except for 

the lower mortality at the highest ages for men.  Mortality is also essentially flat across the 

duration of the survey except for the first year or two.  This pattern is probably due to the fact 

that respondents who were likely to die immediately after the survey were less likely to 

participate in it.  Despite the absence of a strong effect of lag time on the mortality risk, it may 

moderate the effect of BMI throughout the followup time. 

The results from models that include the BMI by lag time interaction (using tensor product 

splines) are presented in figures 4a and 4b.  The patterns for both men and women look similar:  

for deaths that occur shortly after the interview where BMI is reported, low BMIs are associated 

with much higher mortality while mortality appears to be increasing more slowly with higher 

BMIs.  With increased followup time, this patterns reverses:  low BMIs are associated with 

relatively low mortality, while individuals who reported high BMIs are interviews have much 

higher chances of dying.  This patterns likely represents reverse causality whereby disease causes 

weight loss – hence, individuals who report low BMIs at interviews may be those who have low 

weight because they are seriously ill and are therefore likely to die shortly after the interview.   
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Finally, in figure 5 we show the association of BMI with cause-specific mortality, focusing on 

cardiovascular, respiratory, cancer, and diabetes deaths.  The main point from these results is the 

substantial differences among the causes in the functional form of the BMI predictor.  For 

cardiovascular deaths, the association is U- or V-shaped for men and women.  The nadir of the 

relationship is around 25 for men and 22-23 for women.  For respiratory deaths, there is a strong 

increase in mortality at low BMIs and little or no increase at high BMIs.  This pattern is likely 

due to smoking whereby smokers tend to have lower body weights (Flegal, Troiano et al. 1995) 

and suffer increased mortality from respiratory illnesses such as lung cancer or emphysema.  The 

relationship between BMI and cancer is relatively flat, compared to other causes.  For men, there 

appears to be slightly increased risk of dying from cancer at low and high BMIs, while for 

women the mortality curve dips slightly at the extremes of the BMI range.  This difference may 

be due to the gender difference in the distribution of various types of cancers, each of which may 

have a different association with body mass.  Finally, diabetes shows a clear, strong, 

monotonically increasing association with BMI for both men and women.   

DISCUSSION. 

Despite the wealth of research addressing the effects of body weight on mortality, the shape of 

the association has not been established beyond the general curvilinear pattern where high and 

low BMIs are associated with increased mortality.  Parametric models that have been used for 

the analyses, with BMI specified as quadratic or step function by definition cannot describe the 

precise shape because they impose an apriori global shape on the full range of data.  

Nonparametric models are better suited to allowing the data to reveal the shape of the 

association.   

In this paper, we used generalized additive models, a type of nonparametric models, to examine 

the shape of the BMI-mortality association for all-cause and cause-specific mortality in non-

Hispanic white male and female older adults.  The analyses revealed several interesting results.  

First, the effect of BMI on all-cause mortality tends toward a V-shaped one, rather than the U-

shape under the quadratic specification.  The corollary of this finding is that researchers may use 

splines to model the association rather than a quadratic form.  The placement of the knot for the 

spline function could be determined using a nonparametric exploratory analysis like those 

presented here.  Second, the association between BMI and mortality is somewhat stronger for 
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men than for women but  the general shape is similar for both genders in all-cause, as well as 

cause-specific mortality.  Third, duration is an important factor influencing the BMI-mortality 

association.  For short-duration followup, low BMIs are associated with increased mortality more 

so than high BMIs.  A reversal occurs with increased lag time whereby for deaths that occur after 

a long duration since interview, high BMIs are strongly associated with mortality while low 

BMIs are not.  Finally, there are large differences between BMI and mortality from different 

causes of death – BMI is only weakly related to cancer deaths, low BMI is strongly associated 

with respiratory deaths, and high BMI with diabetes deaths.   

The goal of this study was to begin analyzing the nature of the shape of the BMI-mortality 

association.  There are limitations in the data and analyses that make the finding only a first step 

in a progress toward a better modeling of their association.  The NHIS dataset was used because 

of its size, which permitted cause-specific analyses.  However, smoking information was 

collected only in periodic supplements.  Since smoking is a crucial mediating variable, its 

absence for the full dataset is a strong drawback of the presented results.  Another limitation is 

not controlling for baseline health status -- this problem, however, can be addressed relatively 

easily in future studies.  A third limitation concerns the BMI measure.  BMI changes across the 

lifecourse, sometimes dramatically.  The NHIS collected BMI at one time point only and we had 

to model BMI as if it remained static during the followup.   

A next step in this line of inquiry will involve extending this analysis to control for smoking 

status, physical activity, baseline health, and socioeconomic status.   Another desirable feature of 

the data to be used is measured, rather than self-reported, body mass index.  A dataset such as the 

National Health and Nutrition Examination Survey III linked to mortality files includes all these 

data, although is much smaller size (N=20,050 adults) would preclude cause-of-death analyses.   
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Table 1.  Characteristics of the analysis sample at interview and followup, by gender. 

 Men Women 

N 109,345 128,563 

Age at interview (mean, s.d.) 62.8 (8.4) 63.9 (8.7) 

BMI (mean, s.d.) 26.3 (3.9) 25.4 (4.8) 

    Underweight 1.0% 3.2% 

    Normal weight 35.7% 49.9% 

    Overweight 47.7% 30.5% 

    Obese 15.6% 16.3% 

Education (mean, s.d.) 12.7 (2.5) 12.6 (2.2) 

Rural  28.3% 28.1% 

Region of residence   

    Northeast 22.3% 22.9% 

    Midwest 27.2% 27.2% 

    South 31.9% 32.0% 

    West 18.5% 17.9% 

Followup information   

Proportion died 29.4% 22.4% 

Years of followup (mean, s.d.) 9.7 (4.1)  10.1 (4.0)  

Age at death (mean, s.d.) 74.0 (8.3)  76.1 (8.5)  

Cause of death (as proportion of total deaths)  

   Cardiovascular 36.3% 33.8% 

   Cerebrovascular 5.5% 8.0% 

   Respiratory
1
   17.3% 14.2% 

   Cancer
1
 19.4% 20.2% 

   Diabetes
2
  2.4% 3.0% 

   External  3.0% 2.0% 

   Other 16.1% 18.7% 

Note:  the analysis sample is restricted to non-Hispanic white men and women, age 50-80 at 

interview, with BMI between 15 and 45. 
1
 Lung cancer is excluded from the cancer category and included in the respiratory category. 

2
Additional deaths had diabetes as an underlying cause: 2,816 observations (8.8% of all deaths) 

for men and 2,774 observations (9.6% of all deaths) for women. 
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Table 2.  Effect of BMI on all-cause mortality, by gender. 

 Men Women 

 1 2 1 2 

Age 1.093*** 1.093*** 1.095*** 1.094*** 

 (0.000782) (0.000780) (0.000835) (0.000836) 

Rural 1.038*** 1.037*** 0.993 0.990 

 (0.0129) (0.0129) (0.0132) (0.0131) 

Midwest 0.995 0.997 1.051*** 1.050*** 

 (0.0161) (0.0161) (0.0177) (0.0177) 

South 1.083*** 1.093*** 1.063*** 1.067*** 

 (0.0167) (0.0168) (0.0173) (0.0174) 

West 0.921*** 0.926*** 1.000 1.008 

 (0.0164) (0.0165) (0.0188) (0.0189) 

Categorical BMI, normal weight as ref. 

Underweight  2.399***  1.805*** 

  (0.0924)  (0.0457) 

Overweight  0.847***  0.971** 

  (0.0104)  (0.0135) 

Obese  1.087***  1.258*** 

  (0.0187)  (0.0210) 

Continuous BMI     

BMI 0.957***  0.982***  

 (0.00165)  (0.00140)  

BMI squared 1.007***  1.004***  

 (0.000189)  (0.000154)  

N 109342 128562 

*** p<0.01, ** p<0.05.   

Note: Mortality hazard rations, standard errors in parentheses. 

Results are from all-cause proportional hazard models for non-Hispanic white men and women 

age 50-80 at interview with BMI 15-45.  Model 1 specifies a continuous quadratic shape of the 

BMI predictor.  BMI is centered around 25.  Model 2 includes BMI as a categorical predictor 

with normal weight (BMI 18.5-24.9) as reference. 
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Fig. 1. Mortality hazard by BMI, quadratic specification
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